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I. INTRODUCTION

The theory presented in this report is intended to
represent the behavior of solids which exhibit irreversible
straining - e.g. plastic strain. Irreversible straining of
a material is a consequence of microstructural mechanisms,
the operation of which may be understood but difficult to
represent theoretically for a real material. It is presumed
that for a continuum theory of thermal statics the effects
of the microstructural deformation mechanisms can be repre-
sented by a continuous substate variable (or variables).

Only principles of continuum mechanics (including thermal
effects) are invoked in the postulates and following analysis;
no kinetic models of microstructural mechanisms are assumed.
By this approach it is hoped that the results presented will
have general utility - within the confines of the theoretical
postulates.

At the foundation of the theory are the assumptions that
the local equilibrium state of a material is completely
characterized by three variables - the deformation gradient,
the entropy, and the substate variable - and a caloric equation
of state exists. Further, it is assumed that a continuous
curve in equilibrium state-space can represent a process; it
follows that such processes are independent of rate effects
such as viscosity. Also the concept of approach to equilibrium
states from nonequilibrium states, used frequencly in related
theoretical developments, has no place in the present theory.
Other researchers have used substate variables in the develop-
ment of continuum theories, but those theories all differ in
some important aspects from the present one. Examples of such
developments are regresented by the papers of Kratochvil and
Dillon(l) and Rice( ) who treat elastic-plastic behavior, and

Coleman and Gurtin(a) who treat the thermodynamics of nonlinear
material.
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The theory has potential for the study of microstructural
mechanisms which can be described in terms of metastable states.
In the present theory one may interpret the phrase "equilibrium
state"” with the meaning usually associated with the phrase
"metastable state,' and an equilibrium process represents a
process in a space of metastable states.

Although kinetic models of microstructural mechanisms
have not been used in the development of the theory to date,
a qualitative description of the mechanisms, which the substate
variable may represent, is helpful for intuitive reasoning. Also
a quantitative microstructural model (used in conjunction with
the present theory) eventually may lead to the improved under-
standing of the behavior of particular materials. Perhaps
the best known examples of such mechanisms in solids are the
motion of dislocations in m?2§ls(1’2) and the stable growth

of microcracks in ceramics.

In Section II (Preliminaries) some concepts of continuum
mechanics and mathematical analysis are presented briefly. The
postulated theory, titled Definition of Stable Equilibrium, is
presented in Section III (Precepts of Equilibrium Theory).

The remainder of this section is devoted to further analysis
of the caloric equation of state; no new postulates are
introduced. In Section IV (Global Stability) two types of
stability are defined: Global Adiabatic Stability, and Global
Adiabatic Mechanical Stability with Fixed Boundary. Some
theorems of dimensional invariance and a relationship between
global stability and equilibrium state are proven. There are
many more properties of the equilibrium region which can be
deduced with no additional postulates. Some of these ideas
are discussed in Section V (Concluding Remarks), but their
development must be left for the future.




II. PRELIMINARIES

This section is but a brief discussion of a few concepts
of continuum mechanics and mathematical analysis which are
used in the following sections. Comprehensive presentations
of the subjects can be found in the books of Truesdell and
Toupin,(s) Truesdell and Noll,(6) Apostol,(7) and Zukerberg.(s) :

Generally, direct notation is used throughout this report.

A tensor (Aij) is represented by A . The product of two tensors
ABT represents AikBjk and trABT represents AijBij

Symbols e , 6, T, ... represent functions whose values are

e, 9, 1.

The deformation gradient (F) is taken as the description
of strain in this report. Let X (or XK) denote material
coordinates and x(or xi) denote current coordinates of a body.
In this description X represents a particle and x a position.
In particular, let X represent the coordinates of the body in
a reference configuration. A deformation of the body is completely
described by

= 2t (II-1)

and the deformation gradient is

i

ol - 9 oi

It follows Eq. (II-2) that F transforms as a vector
under a change of current coordinates and as a vector under a

change of material coordinates. F may also be considered as
a second-order tensor with the use of Euclidean shifters

(gt) ; e.g. the components of F relative to material coordi-
nates are

FK K gt (1I-3)




F will be considered a second-order tensor, or equiva-
lently as a linear operator on E3 , and generally the material
(coordinate) description will be assumed in this report.

It follows the permanance of matter that

O <det F < = (11-4)

and it follows Ineq. (II-4) that F 1is invertible.

The polar decomposition theorem insures that F has
the following unique decomposition:

[}

F = RU (II-5)

where R (the rotation tensor) is proper orthogonal,

RIR = I

det R=+1 (1I1-6)

and U (the right stretch tensor) is symmetric and positive
definite.

Furthermore, under a change of reference frame (not a
change of coordinates) F,R,U transform as follows

F' = QF
R' = QR
U' = U (11-7)

where Q , an orthogonal tensor, characterizes the frame change.
Under a change of reference configuration (again not a change
of coordinates) F,R,U transform as follows

F' = Fu-!

R' = RHY

U' = y-lTygl (1I-8)
4
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where H , a second-order tensor, O < det H < » , represents
the change of reference configuration.

Equations (II-7), (II-8) present precisely the meaning
of the following: F and R transform as vectors under a change
of reference frame and as vectors under a change of reference
configuration; U transforms as a tensor under a change of
reference configuration.

The principle of reference frame indifference states that
constitutive equations must be indifferent to the reference
frame. It is important to note that for constitutive equations,
there is no principle of reference configuration indifference.

The measure of stress used in this report is the first
Piola-Kirchhoff stress tensor (TR), which is defined in terms
of the Cauchy stress tensor (T) as follows:

1T

T, = JTF (11-9)

R
where J 1is the ratio of the current material density (p) to
the material density in the reference configuration. The
quantity (l/pR)(TR) transforms as a vector under a change of
reference frame and as a vector under a change of reference
configuration.

Consider the set of all second-order tensors in 3-dimensions
with elements A (or AKL). It follows that A-space is the
space of linear operators defined on E3 ; therefore A-space

is a real vector space with vector product:

Ay, Ay ¢ A-space =$Al A, € A-space

and A, € A-space =>A{ € A-space (1I-10)

Also define the inner product of A;, Aj e A-space as follows:

(A1, A = ApPK (" (1I-11)




It follows Eq. (II-11) that A-space is areal inner product
space. Furthermore A-space is normed and metric by the
Euclidian norm and distance functions:

A Il = cay, apY2

d(A;, A)) = [l A) -4, |l (11-12)

for Al’ A2 e A-space. One may also show that A-space is
closed under the usual matrix product:

A,, A, ¢ A-space = A1A2, AjA; € A-space (I1-13)

In other words A-space is a normed linear algebra.
Let A, A2 € A-space such that
0 < det Al < @
|l Ay Il =1 a unit vector (II-14)

Consider a path in A-space defined as follows:

A(s) = A1 + sA2 for s ¢ R (II-15)

It follows Eq. (II-14) that Al has an inverse in A-space
and Eq. (II-15) that

Ail A(s) =TI + s Ail A, (I1-16)
and
1a,+ s2 11483 Det(AilAz) (I1-17)

1

det AilA(s) =1+strA]

where II is the second principal invariant of Ai
The three invariants of AIIA2 are bounded and

0 < det Ail < o ; therefore it follows continuity of Eq. (II-17)
that there is a neighborhood of s = 0 , N(0) such that

A2 ¢ A-space.




8 € N(O) 2 0 < det A(s8) < = (11-18)

Eq. (ITI-18) was developed for an arbitrary unit vector
A2 £ A-space; therefore it is true for all unit vectors in
A-space. It follows
Al ¢ A-space, 0 < det A1 < »
= there is a neighborhood of A; in A-space, N(4,) such that
A e N(Al) » 0 < det A < » (1I-19)

Let A+-space denote the set of all A € A-space such that
0 < det A < » ., It followe Eq. (II-19) that

A+-space is open C A-space (1I-20)
Let Q1 ¢ A be proper orthogonal:
Qrq -1
det Q; = +1 (11-21)

and denote the set of all proper orthogonal tensors by
Q+-space. A proper orthogonal tensor may be interpreted as

a rigid rotation of reference frames. It can be demonstrated
that given any pair Ql’ Q2 € Q+-space , there is a continuous
path in A-space, Q(s) on 0 < s <1, such that

Qo) = Q, Q(1) = Q,, and

Q(s) € Q' -space for 0 <s <1 (I1-22)

Now consider any pair Al, Aze:A -space. It follows that
A has an inverse in A-space and A2A115:A -gpace. Also for
any Q € Q -space, Q A2A11 3 A+-space It follows the polar

decomposition theorem that there is a Ql € Q -gpace such that




QlAZAi1 € A+-space is symmetric and positive definite. Now

consider the path in A-space given by the following:

A(s) = (‘l-s)A1 + 8 Q1A2

on 0<s8<1l (I1-23)

It follows Eq. (II-23) that

A(s)AIl = (1-8)I + s QlAzAil

on 0<s<1l (I1-24)

and since Q1A2Ai1 is symmetric, it follows Eq. (II-24) that
K(s)Ail is symmetric on 0 < s < 1 . Also it follows Eq.
(I1-24) that

det K(s)Ai1 = (1-s)3-b(1-s)zs tr(QlAzAil)
3 det(QuAnA]
on 0<s<l (1I-25)

+ (l-s)s2 II+s 1)

where II 1is the second principal invariant of QlAZA]'_1

Because QlAzAil is symmetric positive definite the three
principal invariants are strictly positive and it follows
Eq. (II-25) that

0 < det A(8)Aj' <= on 0 <8<l (1I-26)

By hypothesis 0 < det A1 < o ; therefore 0 < det Ail < ™

and it follows Eq. (II-26) that

0 <det A(s) <= on 0<s <1l (11-27)

In other words the straight path in A-space, represented by
Eq. (II-23),1is in A+-space.




It follows Eq. (II1-22) that a continuous path Q(s) ¢
Q+-space may be found such that

Q(s) on 0<s8<1l ¢ Q+-space
Qo) =1, Q) = Q] (11-28)

Now consider the continuous path in A-space defined by Eqs.
(I1-23), (I1-28):

A(s) = Q(s) A(s) on O <8<l
A(s) = (1-8) Q(s) A; + 8 Q(s)Q1A2

A(o) = Ay A(l) = A, (11-29)
Also it follows in Eq. (II-27) and Eq. (II-29) that
0 <det A(s) <~ on 0 <8 <1 (11-30)

It follows that Eq. (II 29) represents a continuous path between
A, A which is in A" -space. But A,, A, were chosen

P arbitrarily in At -space; therefore between any two vectors
in At -space a continuous path may be found which lies in
Af-space.

In other words A+-space is a connected subset of
A-space. It's convenient to summarize some of the
properties:

A-space is the space of second-order
tensors on E3

A-space is an inner product space with
matrix multiplication (II-31)




A+-apace z {A]A ¢ A-space, 0 < det A < =}

A+-space is a domain (i.e. open connected subset) (II-32)
of A-space

A+-space is a metric space and is closed under matrix
multiplication.

It will be useful to characterize further the properties
of paths on A+-space. Let A, Ay € A+-space be symmetric
and positive definite tensors and consider the straight
path in A-space connecting them:

A(s) = (1-8)A, +8 A, on 0 <s <1

where Ay, A, e A*-space are symmetric,
positive definite (I1-33)

It follows Eq. (II-33) that A(s) ¢ A-space and symmetric on

0 <sc<l. Choose s =358, on 0<s <1l; since A(s;) 1is
symmetric it follows that there is an orthonormal basis in

E3 relative to which the matrix A(sl) is diagonal. Relative
to this basis, Eq. (II-33) has the following representation

for A(sl):

(A(81))1) = (1-8))(Ay)q) +87(Ay)yy

(A(81)) 27 = (1-81) (A1) py + 8, (A2) 5

(A(81))33 = (1-81) (A1) 33+ 8 (A)) 55

(A(sl))ij 0 for 14 ] (II-34)

Since Al' A2 are symmetric positive definite tensors, their
diagonal elements (relative to any orthonormal basis in E3)
are strictly positive. It follows Eq. (II-34) easily that




0 < A(8y)qq < =

0 < A(s1)gy < =

0 < A(81)33 < » (11-35)

or equivalently A(sl) is positive definite. Since s, was
chosen arbitrarily, Eq. (II-35) applies on 0 < s <1 . Hence
the following has been proven:

A, A, € A+-space
1 2
such that Al’ A2 ::%> A(s) is symmetric, positive definite

are symmetric, on 0 < s < 1 where
positive definite A(s) = (1-s)A14-s A2
on 0<s<1 (1I-36)

Let A(s) represent a continuous path on A-space - i.e.
A(s) represents a function R— A-space. The path derivative
is represented by A(s):

Ats) = & as) (11-37)
Let A(s) be straight; it follows that A(s) e A-space:

A(s) = (1-s)A1 + s AZ , Al’ Az € A-space

A(s) = Ay-A, , A,-A) € A-space (1I-38)

Also note the meaning of tangent. A straight path
(1-s)A; + s A, is tangent to a continuous path A(s) at A,
if and only if A(0) = A; and A(0) = Ay-Ay .

Straight paths in A-space will have frequent use; it is
convenient to define a brief notation:

11




L[Al, Az] - {A(s) |A(s) = A] + 8 Ay, 8 ¢ R,

Al’ A2 € A-space} (11-39)

consider a vector A e A+-space, and a straight path
L(Al. AZ) where A2 € A-space.

A(s) = A) + 8 A,
A e A+-space A, ¢ A-space (I1-40)

It follows Eq. (II-18) that
A(8) ¢ A+-space on s ¢ M(0) (11-41)

Furthermore it follows the polar decomposition theorem that

A(s) = Q(s) S(s) on s ¢ N(0)

where Q(s) is proper orthogonal
S(s) is symmetric, positive

definite (1I-42)
It follows Eqs. (II-40), (II-42) that
A(0) = A; = Q(0) s(0)

A(0) = A, = Q(0) S(0) + Q(0) $(0) (11-43)

Eq. (11-43)2 has the following representation:

AC0) = A, = Q(0) QT(0) A, +4; s71(0) $(0)
. . A
or Q(0), $¢0) L, 4, (11-48)




It follows Eqs. (II-39), (II-44) that a straight path
through A; 1is uniquely defined by Q(o), S(0) . Now it
will be proven that the function represented by Eq. (II-44)
is one-to-one.

Since Q(s) 1is orthogonal, it follows that
QT(s) Q(s) = I on s ¢ 17(0) (1I-45)

Differentiating Eq. (II-45) and setting s = 0 gives the
following for any smooth Q(s):

QT(0)Q(0) + QF(0)Q(0) = 0
T 0ve 5T Teare ey Lol (ay¢
QT (0)0(0) + 0T(0)Q(0) = -2¢QT(0)Q(0)T(QT(®Q(0))  (II-46)

Also it follows Eq. (II-40) that A(0) = 0; therefore it
follows Eq. (II-42) that

Q0) S(0) + 2 Q(0)YS(0) +Q(0)S(0) = 0 (1I-47)

It follows Eq. (II-46)lthat

¢ = QF(0)Q(0)
c=-c¢f (II-48)

Eq. (II-43)2 has the following representation:

AT(0)a,571(0) = ¢ + §(0)s71(0) (11-49)

where C is skew-symmetric, S(0) is symmetric and positive
definite, and $(0) is symmetric.

Take the transpose of Eq.(II-49) and add to Eq. (II-49):

QT (014,571 (0) + (@ (0)4,571(0)) T = $(0)572(0) +571(0)§(¢0)
(11-50)
Eq. (II-50) has a unique solution for S(0). To prove it,
it is convenient to use matrix representation. Because

13




s‘1(0) is symmetric positive definite, it follows that there
is an orthonormal basis in E3 such that 8'1(0) is
diagonal:

ay 0 0

-1
S () =]o0 a, 0
0 0 ag

where a;, a,, ag > 0 (1I-51)

It follows that
[ . . 7
Sll(Zalz\\Slz(a2+a1) 813(a3+a1)
5(0s”Lo)+s71(0)s = §,,(2a))  $,5(aztay)

\ 1 ]
S43(2a3)
- (II‘SZ)

The coefficients of the elements of S in Eq. (II-52) are
strictly positive; therefore Eqs. (II-50) may be solved
uniquely for S(0) , i.e. it follows Eqs. (II-50), (II-52)

that
A1 .
A2 — S(0) (II-53)

It follows Eq. (II-43), (II-53) that
: A1 . .
A2 —— Q(0), S(0) (1I1I-54)
Finally, it follows Egs. (II-44), (II-54) that
. . A
Q(0), S(0) «——— A2 (1I-55)

as was to be proved.

14




Consider a scalar valued function defined on A-space:

£=f£(A), Ac A-space , £ cR (11-56)

The gradient of f 1is a second-order tensor and the second
gradient is a fourth-order tensor, which are represented as
follows:

~ _ a A

where fA ¢ A-space
£,,(A) = & 2 £(A)
AA A 3A

where fAA is a linear
operator on A-space (II-57)

The first and second directional derivatives of £(A)
evaluated at A = Al for the direction A2 have the
following representations:

Dy, Elap) = e {f}:(Al)Az}

2

Let f£f(A) be smooth on A-space and A(s) be a smooth
path on A-space. It follows Taylor's expansion that

£()-£0) = (D gy ECACO)))

2 ~ 2
+ 5 (DK(O)f(A(O))+DA(0)f(A(0)))

t v for s e N(O) (II-59)

15
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It follows Eq. (II-59) that the path derivative f(O)
equals the first directional derivative. Also if A(s) 1is
a straight path the second path derivative E(O) equals the
second directional derivative. More generally, it follows
Eqs. (II-11), (II-SB)% (1I-59) that E(O) equals the second
directional derivative if, and only if, A(O) is perpendicular
to £,(A(0))

Now consider all symmetric second-order tensors (B):

B-space = {FIA € A-space, A = A?} (II-60)

It follows easily the structure of A-space that

B-space is a real inner product space
B-space is connected C A-space (1I1-61)

Further define B+‘space:

B+-space = {?lB € B-space, B is positive
definite} (II-62)

It follows Eqs. (II-36), (II-62) that
B+-space is connected C B-space (11-63)

Let B1 € B+-space and 32 represent a unit vector in
B-space. Consider the straight path in B-space defined as
follows:

B(O) =B, +8B,, 0<s<w~ (I1-64)

Choose a number 8y 0 < 81 <o), Since B(sl) is symmetric,
an orthonormal basis in E3 may be selected so that the matrix
is diagonal. Relative to that basis, Eq. (II-64) gives the
following:

16




Byy(sp) = (By)qy + 8By
Byp(sy) = (By)yy + 51(By)yy

B33(s1) = (Bylaz + 81 (By)a; (11-65)
Let b represent the minimum eigenvalue of B, . Since B,

is positive definite and 32 is a unit vector, it follows
that

0 <b < o, and

b (Bylyy <=
b < (By) < o
1733 relative to
honormal
- s < s (By) <s any ort
- 2’11 basis in E°

It follows Eqs. (II-66) that a number M > 0 can be found
such that
0 < (Bplyy +8 (Bylyy <=

0 < (31)22 +s (32)22 < any orthornormal
0 < (B))gy + 8 (Bylgg <=  basis in E>

relative to

for 0 <s <M (11-67)

It follows Eqs. (II-67) and (II-65) that
B(s) 1is positive definite on 0 < 8 < M (II-68)
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Since the unit vector B, was chosen arbitrarily in B-space,
it follows that Eq. (II-68) holds for any unit vector in
B-space. It follows that

By € B+-space¢=» there is a neighborhood of B, in
B-space, N(Bl) , such that
N(Bl) C B+-space (11-69)
In other words
B+-space is open C B-space (11-70)

It is convenient to summarize the properties of the two spaces
as follows:

B-space is the space of symmetric
second order tensors on E

B-space is a real inner product
space

B-space is connected C A-space (1II-71)

B+-space = {f|B € B-space, B is positive
definite

B+-space is a domain of B-space
B+-space is a metric space

B+-space is connected C A-space (11-72)

Now consider the triplet (A, a, B)., Define the
associated space as follows:

(A, a, B)-space = {(A, a, B)|A ¢ A-space, a € R,
B ¢ B—spac%} (1II-73)

Retain all of the operations defined on the three subspaces;
e.g. the inner product is




anrvr——

(Al, al: Bl)’ (AZ) a2' BZ) = (Al, A2)+ a1a2+ (.Bli Bz) (11-74)
and the norm and metric follow easily. It follows that

(A, a, B)-space is a real inner product space (11-75)
Now define (A, a, B)+—space:

(A, a, B)+-space E{}A. a, B)|A ¢ A+-space, 0 < ac< =,
B e B+-spac%} (I1-76)

It follows easily the properties of the three subspaces
that
a, a, B)+-space is a domain of (A, a, B)-space,
and (A, a, B)+-space is a metric space (11-77)

Also consider the space defined as follows:
(A, a, A)-space = {EAI, a, A2)|A1' A2 e A-space
ac é} (11-78)

It is clear that

(A, a, A)-space is a real inner product space (11-79)

Also
(A, a, A)+-space = {}Al’ a, A2)|Al’ A2 € A+-space,

0 <ac<ow (11-80)
Then
(A, a, A)+-space is a domain of (A, a, A)-space

(A, a, A)+-space is a metric space. (11-81)

Finally note the following:




(A, a, B)+—space is a connected subset of
(A, a, A)+-space , (11-82)

and the mapping from (A, a, A)+-space onto (A, a, B)+-space
defined as follows,

(Al’ 31. Az) -_ (Al' a. QZ Az)
where Q2 A2 is symmetric,

| § positive definite (11-83)
]

is open - i.e. any neighborhood of (A, a, A)+-space maps onto
Lf a neighborhood of (A, a, B)+-space.
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III. PRECEPTS OF EQUILIBRIUM THEORY

Experimental experience indicates that many solids
exhibit persistence for restricted ranges of loading. Such
phenomena may be described theoretically by criteria of
mathematical stability - stability corresponding to persistence
and less of stability corresponding to uncontrolled spontaneous
processes. The following theory of equilibrium of solids puts
these ideas into precise mathematical statements. Stability
is posed in terms of energy considerations; the interaction of
both thermal and mechanical sources is included. The following
principles of continuum mechanics are the foundations of this
theory:

1. Balance of linear momentum, moment of momentum, and
energy.

2. The principle of reference frame indifference.

3. The principle of local action.

There is a definition of simple material in the foundations
of mechanics for purely mechanical theories. That definition is
generalized here to include thermal energy.

Let q represent the external supply of heat (q is a mass
density). Then a thermomechanical loading is represented by
the pair (F(t),q(t)), where F(t) and q(t) are functions
of time (t)

Definition of Simple Thermomechanical Material

A simple thermomechanical material is a material whose
stress is uniquely determined by the history of its thermo~
mechanical loading:

(F(s),q(8)) for -=» < s < t — Tp(t) (1II-1)

The idea of '"persistent'" will be given the following
meaning.




Definition of Persistent

Let F(tl), TR(tl) represent the values of thg deforma-
tion gradient and the stress for t = t; - The pair,
(F(tl), TR(tl)) is persistent, means there is a thermomechanical
loading (F(t), q(t)) such that

(F(t),q(t)) = (Fy(t;),0)
and for t > t1
TR(t) = TR(tl) (I1I-2)

In this report the term persistent will be used to describe
experimental observations; the phrase "equilibrium state,"
which has a similar meaning, will be used in the theory.

A local state, or simply state, is characterized by the
values of the deformation gradient (F), the entropy density (n),
and the substate (a) . Inherent in these measures is a reference
configuration from which F is measured and relative to which
densities are measured; all densities are measured per unit mass
in the reference configuration. The substate variable (a) is
a parameter which represents the microstructure. Three
additional state variables are assumed primitive concepts: The
internal energy density (e), the stress (TR), and the
temperature (9); e, TR’ 8 are ascribed their usual properties.
Relative to a reference configuration a state is represented
by the triplet (F,n,a) . Furthermore it is assumed that if
the triplet (F,n,o) represents a stable state, then it
uniquely defines values of all state variables, i.e.

(Fvn)a) _'ée,T (III'3)

R 8

So far the substate has been represented vaguely by a .
Such a representation is too vague to be of predictive value.
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Microstructural changes are represented in the theory of
plasticity by plastic strain. A similar measure is used in the
present theory - substate stretch tensor.

Definition of the Substate Stretch Tensor (B)

The substate stretch tensor (8) is a symmetric, positive

definite second-order tensor which transforms as a second-order

tensor under a change of reference configuration:

g' =ulTg gl (I11-4)

where H represents the change of reference configuration.

The following postulate makes clear that the theory
that follows 1is restricted to substate processes which may
be represented by the substate stretch tensor.

Postulate I

There are substate processes which may be characterized
completely by the effects on the substate stretch, i.e. there
is a map

(F, n, a) —> (F, n, B) (I1I-5)
such that if

(F].’ Ni» al) —> ey, TR]_’ 61
and

(Fl’ nl; az) _">e1v TRI, el
then

(Flr nlo al) —_— (Fln nlv Bl)
(Fl’ nl' 02) D (Fl’ 771. 31) (1III-6)

It follows that if the triplet (F, n, B) represents a stable
state, then there is a function such that

(F, n, 8) —> e, Ty, 8 (I1II-7)
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Note that, for any proper orthogonal Q , the matrix
product QB represents an element in A*-space (defined in
Section II):

QB € A+-space (III-8)

where Q 1is proper orthogonal.
Definition of (F,n,B8)-space

(F’nn B)'SPace = {(F'leB) F € A+-space,
0 < n < o,

+
B ¢ B -space,
Q is proper orthogonal} (III-9)

It follows that (F,n,B)-space is exactly the (A,a,A)+-space
described in Section II. The symbol 8 will always represent
the substate stretch tensor; hence it is always symmetric,
positive definite. Note in Eq. (III-9) that (F,n,B)-space
is isometric to E19 . In most of what follows the values
of the triplet (F,n,QB) will be restricted to the values of
the triplet (F,n,B), which defines a connected subset of
F,n,B)-space. In other words, even though B 1is symmetric,
its dimension is taken as nine. Also, when convenient, an
orthogonal tensor may be introduced into the notation, i.e.
a point in (F,n,B)-space may be represented by (F,n,QR).

Next follows a definition of stable equilibrium, upon
which the analyses which follow rests.

Definition of Stable Equilibrium (S.E.)

There is an open region of (F,n,B)-space (D) for which
a triplet (F,n,B8) ¢ D if and only if:




(a.)

and

(b.)

(c.)

(d.)

(e.)

(f.)

There are functions defined on D such that
e = &(F,n,B)

TR = fR(F,n,ﬂ)

9 = §(F,n,B) (11I-10)
e(F,n,8) ¢ c?
(Flnnltel)s (FlanQBI) € D“ L[(.Flvnlssl)’
(FI’QZ’BliF D (III-12)
(Fl,nl.Bl) e D = there is a (Fz,nl,Bl) e D such
that %R(Fz,nl,el) =0 (III-13)

,n>0,6>0 (I1I-11)

The isotropy group of &(F,n,B8) is a proper subset
of the unimodular group. (I1I-14)

Reference frame indifference requires, for any
proper orthogonal QI’QZ' the following:

(Fl’“l’el) e D= (QlFl.nl.QZBI) e D,
é(Flanli Bl) = g(QlFlynthzsl)

(III-15)

Consider a spherical neighborhood of 0 1in E3
(NR(O)). Then (Flnlsl) e D only if there is a
neighborhood of the function FIX(N(FI)), a neighbor-
hood of nl(N(nl)), and a neighborhood of BI(N(BI))'
such that for all homeomorphisms (on NR(O))

£f(X) ¢ N(Fl), all n(X) e N(nl), and all B(X) ¢ N(Bl)
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I E(F(X),n(X),8(X)) dV > e(Fy,ny,8)0V (111-16)
Ng(0)

where 1) £fX) = le on aNR(O), and
F(X) = v£(X) on NR(O)

(ii) j n . AT
NR(Q)Qﬂ(F]_, nl: 61) (n(x)'l’ll) +tr e8<rlnn10 81)
(B(X)-8}) AV = 0

To proceed with analysis, a means of comparing values of
state variables on D is required. To distinguish between
paths and processes (which will be defined subsequently) the
following definition is made.

Definition of an Equilibrium Path

An equilibrium path is any continuous function defined on
an interval [a,b) of Rl-space with values in D - {i.e.,

F = F(s)
n = n(s)
Q8 = Q(s)B(s) 2 =82 b (I1I-17)

- and the state variables all assume their equilibrium values
at each point on the path, e.g., e = e(F(s),n(s),Q(s)B(s)).
Such paths are not restricted to realistic processes -~ e.g.,
an equilibrium path may be discussed even if it violates basic
principles of irreversible thermodynamics.

A path derivative is represented by a 'dot" - e.g.,
F(s) = (3/38)F(38) - and, since the analysis in this report
is restricted to the '"material description," a path derivative
is equivalent to the '"material derivative" - i.e., following
a particle of material.




Theorem 1

L T (Fin,8) = &5(F,n,8)
PR
8(F,n,8) = & (F,n,8)
on D (II1-18)
F ngF,n,B) is symmetric

B éng,n, 8) is symmetric

Proof

Consider an equilibrium path through a state (Fl,nl,Bl)
with velocities (F, n, 8). It follows Eq. (III-lOf’ that

° A T . ~ .

AT y 11-19
+ tr eB(Fl’“l’Bl)B (1 )

It follows the foundations of mechanics that e may be
represented in terms of external energy flux:

&= tr (_1_ TRT r") +q (111-20)
-
where tr ék TRT F| is the mechanical working and q represents
R

the heating (addition).

Since D 1is a region, Eq. (III-19) holds for independent
F,n, and 8. Also Eq. (III-20) holds for independent F and q .
It follows Eqs. (III-19), (III-20) that

oo fl.T T :

+q - (an(Fl,nl.Bl)n+tl’ eBT(Fl’nl’Bl) 3) (I11-21)
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Choose F #0, q=0, n=0, 8 =0, it follows Eq. (III-21)
that

_ 1.T_ ~T : '
0 = tr (EE TR - eq (Fl,nl,Bl))F (I11-22)
must %?ld for all F in the space of second-order tensors.
But EE TR -eF(Fl,nl,Bl) is a second-order tensor. The only
second-order tensor which is orthogonal to all F is the
zero tensor, i.e.

1 _
It follows Eq. (III-21), (ITI-23) that ’
A * AT .
q= e (Fj,ny,8))n + tr eg(Fy,ny,8y)8 (III-24)

Now consider é = 0; it follows Eq. (III-24) that

B=0 == q=e (F,n.8)n (III-25)

It follows classical mechanics that for 8 fixed, the
temperature (8) may be defined from the following equation:

q=6n (11I-26)

It follows Eqs. (III-25), (III-26) that
§ = en(Fl,nl,Bl) (I11-27)
Let Q(s) represent a continuous path in F-space such

that Q(s) 1is proper orthogonal and Q(0) = I . It follows
Eq. (III-15) that

' ] g(Q(S)Fl.nl. 31) = 8(?1,7'[1, Bl) (1I11-28)
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Take the path derivative and evaluate for s = 0 :
tr F; é'(Fy,n;,8))Q(0) = 0 (111-29)

Eq. (III-29) inéicates that the tensor 8F(F1’“1331)F1T is
orthogonal to Q(0) . It's easy to show that Q(0) 1is a
skew-symmetric tensor. Furthermore any skew-symmetric tensor
corresponds to a path Q(s). It follows Eq. (III-29) that
;F(Fl'nl’BI)FlT is orthogonal to any and all skew-symmetric
tensors; hence

éF(Fl,nl,el)FlT is symmetric (II1-30)

Consider the same path Q(s) and it follows Eq. (III-15)
that

&(Fy,n;,Q(s)8) = &(Fy,nq.67) (I1I-31)
Again take the path derivative and evaluate at s = 0 .
tr8 e, T(Fy,n1,81)Q(C) = 0 (111-32)

Since Q(O) covers the space of skew-symmetric tensors, it
follows Eq. (III-32) that

éB(Fl,nl,B]_) B]'_r is symmetric (III-33)

Equation (III-18)) follows Eqs. (III-23), (III-10)%;
Eq. (III-18)2 follows Eqs. (III-27), (III-10)3;

Eqs. (III-18)3+% follow Eqs. (III-30), (III-33).
Q.E.D.
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Definition of Substate Tension (t)

The substate tension tensor (t) is defined on D by
the following:

T = T(F,n,Q8) = e5,(F,n, Q8) (ITI-34)

When QB 1is restricted to g the following notation

will be used.
T(F,n, 8) = éB(F,n,s) (I1I-35)

Definition of Adiabatic and Isothermal Paths

Let (Fl,nl,sl) e D and let (F(s),n(s),B(s)) represent
a continuous path in D such that (F(0),n(0),8(0) = (Fy,nq,
B1). The path is adiabatic if and only if

8(F(s),n(s),8(s))(s)+trT (F(s),n(s),8(s))f(s) = O

(I1I-36)
The path is isothermal if and only if
tr B5(F(s),n(s),8(s))E(s) + B (F(s),n(s),8(s)In(s)
+ £x8(F(s),n(s),8(s))8(s) = O (111-37)

It is convenient to introduce a simple notation. A path
(F(s),n(s),B8(s)) that is adiabatic will be represented as
(F(s),nA(s),B(S)) and one that is isothermal will be

represented as (F(s),nl(s),s(s)).

Theorem 2

Consider a smooth path (F(s),n(s),B8(s)) through the
state (Fy,n;,8;), i.e. (F(0),n(C),B8(0)) = (Fy,n;,B;).
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Then for any smooth F(s),B(s) there is a unique nA(s) such
that

1
8(F(s),n,(s),8(s))

ny(s) = - £l (F(s),n,(s),8(s))B(s)

(I1I-38)

Proof

Choose two smooth functions F(s) and B8(s). Since ¢
is invertible Eq., (III-38) follows Eq. (III-36).

Now suppose there is a second function nl(s) which
satisfies Eq. (III-38). Let

81(s) = 8(F(s),n;(s),8(s))
1,(8) = T(F(8),n;(s),B(s))
0,(8) = B(F(s),n,(s),B(s))
15(s) = T(F(8),n,(s),8(s)) (I11-39)

It follows Eq. (III-38) for both nl(s) and nA(s) that

0 = 6y ()n (s) + T{(8)B(s) = 8,(sIn,y(8) + T,(s)B(s) (III-40)

: By definition both paths pass through nj :
f n (0) = ny(0) = ny (I1I-41)
It follows Eqs. (III-41), (III-39) that

8y = 67(0) = &,(0)

-y

= 11(0) = TA(O) (I11-42)
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1

Evaluate Eq. (III-40) at s
that

0 and it follows Eq. (III-42)
ny(0) = n, (0) (I11-43)

Differentiate Eqs. (III-39) and evaluate at s = Q and
it follows Eqs. (III-41), (III-42), (III-43) that

ny(0) = n,(0) (III-44)

This process of differentiation may be continued to prove

that the nth derivatives are equal:

11(0) = 7, (0) (I11-45)

If é(F,n, B ) is smooth in (F,n,R), it follows Eq. (III-38)
that nA(s) and nl(s) are analytic on s . Therefore it
follows Eq. (III-45) that

ny(s) = ny(s) (IT1-46)

which proves the uniqueness.
0.E.D.

Theorem 3

(Fl;nl, 81) € D only if:

(a.) there is a neighborhood of Bl,N(Bl), such that for
all By € N(Bl), By # Bl

e(Fl)nZ: Bz)'e(Fl,nl,Bl) >0 (III'47)

where

(1) 8(Fy.ny.8,) (ny-np)+tr FKFL,ny,81) (8,-67) = O




T

(b.) there is a neighbofhood of ny. N(nl), such that
for all ny € N(nl), ny # ng-

é(Fl,nz,Bl)-é(Fl.nl,Bl)-é(Fl.nl.Bl)(nz-nl) >0
(III-48)

(c.) there is a neighborhood of Bl,N(Bl), such that
for all B8, e N(8{), B, * 8

a(Fl.nl,82)-3(F1,n1,Bl)-tt?T(Fl.nl.Bl)(62-61) >0
(I11-49)

Proof

Consider Ineq. (III-16). Let FX) = Fy and choose 8,
in a neighborhood of By - Let g(X) = By - Compute n, on
the straight path which is tangent to an adiabat at (Fl,nl,sl):

N2™M = ° % - tr ?T(Fl,nl,el)(ez-sl) (I11-50)

It follows that the path functions

£f(X) = F1X
nxX) = by on NR(Q) (1III-51)
B(X) = 82

satisfy the restrictions for Ineq. (III-16); therefore it
follows Ineq. (III-16) that

Ng (0) |




3 Since Q(Fl,n2,32) is constant on NR‘O) and j. dv =V

N, (0)
R
is strictly positive, Ineq. (III-47) follows Ineq. (III-52)

and restriction (i) of (III-47) follows restriction (ii)
of (I1I-16).

Now let
fX) = le
B(X) = Bl (I11I-53)

and it follows Ineq. (III-16) that there is a neighborhood
of nl,N(nl), such that for all n(X) ¢ N(nl)

e(F,,n(X),8,)-€(Fy,ny,8,) dV > 0 (I11-54)
Ng(0)

where (i) f §(F1,n1,81)(n(x)-n1) dv =0
Np (0

By adding the restriction to the inequality, it becomes

&(Fy.n(X),By)-8(F),ny,87)~8(F),ny,8.) (n(X)-ny) dV > 0

N (0) (11I-55)
where
(i) f 6(F1:n1; 61) (n(X)-nl) dv = 0
NR(O)

It follows easily that

Ineq. (III-48) = Ineq. (III-55) (111-56)

independent of restriction (i) of (III-55).




Now suppose not Ineq. (III-48), i.e. suppose in any
neighborhood of nl,N(nl), there is an Ny # ny such that

It follows Taylor's formula with remainder and Ineq. (III-57)
that

ann(Fl.n.Bl) < 0 for n51L[n1:n2] (III'SB)

It follows Taylor's formula with remainder and Ineq. (III-58)
that in any neighborhood of nj, an ny € L[n1,n2] and a
neighborhood of n3,N(n3) can be found such that for all

n e N(na)

é(Fl,n,61)-3(F1.n3.81)-8(F1.n3,Bl)(n-n3) < 0 (I11-59)

Now it can be shown that (Fl'”3’61) £D. Let a(X) be a
continuous, scalar-valued, bounded function on NR(O) such
that

f a(X) dv =0 (I11-60)
Ng (0)

and a(X) is not constant on 'NR(O)
Now choose

nX) = ng + ¢ a(X)
where ¢ ¢ R, ¢ > 0 (I1I-61)

It follows that a nonzero constant ¢ may be chosen small
enough so that n(X) 1is in any neighborhood of ny on
Ng(0) . Now consider Ineq. (III-16). Choose |




x(X) = F; (X)
nX) = ny + e a(X) on NR(O) (I11-62)

which satisfies the restrictions for Ineq. (III-16). It
follows Ineq. (III-59) that there is an ¢ > 0 such that

e(F1,n(X),8))-&(Fy,ny,8y) dV < 0 (111-63)
Nz (0)

Ineq. (III-63) is contrary to Ineq. (III-16)¢ therefore
(FlynS,Bl) t D (III-64)

Then it follows Ineq. (III-57) that not Ineq. (III-48) = in
any neighborhood of

(Fy,ny,8;) there is a triplet

But D 1is open in (F,n,B)-space by definition; therefore
it follows Eq. (III-65) that

not Ineq.(III-48) == (Fl,nl,el) £D (111-66)

Ineq. (III-47) follows Ineq. (III-52) and Ineq.(III-48)
follows Eq. (III-66).

36

i T Mae AR L




Now consider Ineq. (III-49). It follows Ineq. (III-16)
that

E(Fl ’ rlln B-(x)) "g(Fls Y‘Ll. 61) -tr?T(Fl. TL]_. 81) (B(X)"Bl) dV > 0
Ng(0)

for all B8(X) such that (111-67)
(£ tr 27(Fy,ny,8.) (B(X)-8)) dV = 0
N (0)
It follows easily that
Ineq. (III-49) => Ineq. (III-67) (I11-68)

independent of restriction (i).

Now suppose not Ineq. (III-49): 1in any neighborhood of By»
N(Bl), there is a By such that

é(Fl ’ nl ’ 82) ‘a(Fl ’ rll ’ Bl) 'tr?T(Fl ’ nl » Bl) (82"81) f 0 (111‘69)

It follows Taylor's formula with remainder that Ineq. (III-69)
is equivalent to the following:

2

DO’O’BZ_BI e (Fl ny B) < 0 for all B ¢ L [81,82] (I11-70)

It follows Ineq. (III-70) that in any neighborhood of By there
is a 85 ¢ L [81.823 , B3 #8) or B, such that

D%,o,31-33 e (Fy ny 8) <0 for all 8 e L [81,82] (I11-71)
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Now to prove that (Fl,n1,83) ¢ D. Choose any continuous,
scalar-valued, bounded function on NR(o), a(X), such that

a(X) dv=20 (111-72)
Ng (0)
and a(X) is not constant on NR(O) . Let
fX) = F1X ‘
n(xX) = ny on NR(O) (111-73)

where € e R, ¢ > 0

An € > 0 may be chosen so that B(X) ¢ L[Bl,BZ]. It follows
Ineq. (III-71) that

2

DO)O’ B(X)-B3

e(Fy,ny,85(X)) < 0 (111-74)
for all Bc(X) ¢ L[8),8,]

It follows Taylor's formula with remainder that Ineq. (III-74)
is equivalent to the following:

&(Fyny,6(X))-E(F),ny,84)-txT (Fy,ny,B5) (B(X)-B3) < O

(I1I-75)

and it follows Eqs. (III-72), (II1-73) that

trTT(Fy, 1y, By) (B(X)-83) dV = O (I11-76)

Ng (0)




It follows Eqs. (III-75), (III-76) and Ineq. (III-16) that
(Fl;n1,83) £¢D (111-77)
In other words

not Ineq. (III-49)
= there is an (Fl,n1,63) in any

for (Fl'nl’el) neighborhood of (Fl'“1»31) such

But D 1is open by definition; therefore it follows Eq. (I11-78)
that
not Ineq. (III-49)
- (Fl,nl,Bl) ¢ D (I11-79)
for (Fy,ny,8;)
Ineq. (III-49) follows Eq. (III-79). Q.E.D.

It follows continuity of e(F,n,B8) and Taylor's formula
with remainder that Theorem 3 has the following equivalent
representation:

Corollary
(Fl.nl.Bl) e D Only if:

(a.) there is a neighborhood of Bl,N(Bl), such that
for all g, € N(Bl), 8y ¢ 8y

2
D _ e(F,,n,8) > 0 (I11-80)
0 n2 n1.82-81 1

where
(1) G(Fl'“l'el)(“z'“l)+ tr$T(F1.n1.Bl)(Bz‘31)"0
(ii) (n’B) is any pair on L[(n;,8;),(ny,87)]
but (ﬂ.B) f (nlpel)




orprers

(b.) there is a neighborhood of nl,N(nl), such that
for all n2 € N(nl)» nz ¥ nl

enn(Fl’nZ'Bl) >0 (II1-81) |

(c.) there is a neighborhood of Bl,N(Bl), such that
for all B, € N(Bl), By b d By

2

DO, 0. 62_61e(F1,TI1, B) > 0 (111-82)

for all B8 ¢ L[B].’BZ]’ 8 # Bl

Theorenm 4

The temperature function, Eq. (III-18)2, is invertible
in n and the inverse is continuous. A state (F,n,8) is
uniquely characterized by the triplet (F,0,n), where 6 is
the value of the temperature which corresponds to the state
(F,n,8) . Let ﬁ(F,e,B) represent the inverse function:

n(F,6,8) is the inverse of §(F,n,8) on D,

n(F,9,8) is continuous on D, therefore the

map (III-83)
(F,n,B) «—— (F,0,8) is a
homeomorphism on D .

Proof

Because D 1is open it follows that in a neighborhood
there are states (Fl,nl,sl)(Fl.nz,Bl) e D such that “1*‘“2 .
Choose two such states, apply Ineq. (III-48) to each state,
and add the result.

(6(F11ﬂ2,81)'6(F1n181»(ﬂ2'n1) >0 (I11-84)
for n, ¥ ny
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It follows Ineq. (III-84) that 6(F1,n,31) is strictly
increasing in  and one-to-one. Now let L(n) denote
the domain of n :

L(n) = {nl(Flvnn Bl) € D} (111'85)

It follows Eq. (I1I-12) that L(n) 4is connected in R .
Ineq. (I1I-84) applies to any two neighboring states on
L(n); therefore it follows that

§(F1,n,81) is strictly increasing in n (III-86)
on L(n)

It follows Eq.(III-ll)1 that §(F1,n,81) is continuous in n ;
therefore it follows Eq. (III-86) that

ﬁ(Fl,e,nl) is strictly increasing and
continuous on L(¢) where

L(p) = {}|e=§(F1.n.81). ne L(ni} (1I11-87)

In other words

F.,8
n<__l;_l__>e is a homeomorphism on D (111-88)

Since the inverse was defined for an arbitrary pair (Fl,sl),
the definition may be extended onto the image of D :

n = n(F,e,8) on the image of D (II11I-89)

Let (Fl,nl,sl) e D and (Fl,nl,el) —_— el. Choose a
neighborhood of n f(nl)

£(nq)= {5|n1 <n< nﬁ} (I11-90)

where ng <M < "y
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Define eL, eu as follows

) on D (I1I-91)
GU = g(F, Ny 8)

It follows Eqs. (I1I-87), (II1I1-90) that

8(F ,nys8y) > 0 (111-92) j
It follows continuity of 5(F,n,6) that a neighborhood of
(Fy,8y), N(Fy,By) can be found such that
T A ! ]
yNNJ) € N = " -
171 G(F,nU,B) N 61 (111-93) i
Let 6 ..+ Op.x Trepresent the inf of 6; and the sup
of by Trespectively:
Opin, = inf 8(F,ny,8) on N(Fy,6;)
Omax., = SUp 6(F,ny,8) on N(Fy,8) (111-94)
It follows Eq. (III-94) that
Omin. < °1 < ®max. (111-95)
Define a neighborhood of el.N(el) , as follows:
N(el) = {é'emin <9 < emax}' (111-96)

It follows the above construction that any triplet (F,6,8) such
that (F,8) ¢ N(Fl,nl) and 9 € N(el)

=> (F,6,8) —>neN(np) (I11-97)

42

e mam e e B M s el el



In other words for any neighborhood of n;, a neighborhood
of (Fl,el,Bl) can be found such that the image of
N(Fl,el.sl) C N(nl). It follows that

(F,6,8) —>n is continuous (I11-98)

It follows Eqs. (III-11)1 and (III-98) that

(F,n,B) —(F,8,8) is continuous on D

(F,0,8) —(F,n,B8) is continuous on the
image of D (I11-99)
Equation (III-83)3 follows Eq. (III-99). Equation (III-99)1
follows Eq. (III-89) and Eq. (III-99)2 follows Eq. (III-98).
Q.E.D.

It follows Theorem 4 that isothermal paths exist and
are unique in some ways.

Corrolary

Consider a continuous path (F(s),n(s),f(s)) in D through
the state (Fl,nl,Bl) with temperature 6y, i.e. (F(0),n(0),
g(0)) = (Fl,nl,el) and (Fl,nl,bl) —> 6. Then for any
continuous pair F(s),8(s) there is a unique continuous
function nl(s) such that

8, = 3(F(s),nl(s),8(s)) on D (1I11-100)

Theorem 5
Let (Fl,nl,Bl) e D with temperature 01; then

§n(F1,n1,81) $ 0 e (F,0,8) —>(F,n,B) is differentiable
at (Fy,6,8) (I11-101)
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Proof

Consider the inverse maps:

(F,6,8) — n

(F,n,g) — @ (III-102)

In other words the following equation is an identy in

6 = 6(F,n(F,0,8),8) (111-103)

It follows Eq. (III--11)1 that Eq. (III--102)2 is differentiable.
Assume Eq. (III-102)1 is differentiable at (Fl,el,Bl); it
follows Eq. (III-103) that

©_ _[aT R AT '
6 = tr [GF(F]_.HI.Bl) + en(Fl.nl.Bl)nF(Fl.el,Bl)] F
+ en(Flpnlyel)ne(Fltel)Bl) e
AT A I\T * - -
+ tr @B(Fl'nl'el) + en(Fl.nl. Bl)nB(Fl,el, 81)]6— 0 (III 104)
for independent f, é, é. If §n(F1,n1,Bl) # 0 it follows

Eq. (III-104) that

1 AT
- 8-(F;,nq,B4)
a FV'1°"1'"1
en(Fl;nI’BI)
1
en(Fl' nln 81)

nF(Flpelisl)

ne(Flﬂelisl)

~ 1 A
ng(Fy,04,By) = =~ = 8, ,(Fy,nq,8q) (I1I-105)
B 1'°1'"1 en(Fl’"l'Bl) g 171 %1

If § (Fy.np,8)) # 0 it follows Eq. (III-11)' that the right-
hand side of Eq. (III-105) is continuous; Eq. (III-101) follows
Eq. (III-105). Q.E.D
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Corollary ]
§n(F1.n1.Bl) = 0 = ﬁ(F,O,B) is not differentiable %
for (F,6,8) = (Fy,6;,89) (III-106) '
Theorem 6

(Fl,nl,Bl) € D only if there is a neighborhood of
(Fl,nl,Bl) such that for every (Fl’n2’82) £ N(Fl,nl,Bl),
(Fl;nz»ez) # (Fl.nl,Bl)

-tr?T(Fy,ny,81) (8,-61) > 0 (111-107)

Proof

Consider the converse of Ineq. (III-107): 1In any ,
neighborhood of (Fl,nl,Bl) there is a (Fl,nz,sz) # (Fl,nl,Bl) H
such that ]

é(Fl,n,B)-E(Fl.nl.81)-§(F1.n1,61)(n-nl)
-trt(Fy,ny,8;)(B-8;) < 0 (I11-108)
for all (Fl,n' B) E L [(Flynlxsl):(FlnnZnBZ)]

It follows Ineq. (III-108) that there is a (Fl,n3,83) in any
neighborhood of (Fy,n;,8;), (Fy,n5,85) # (Fy,ny,8;),
such that

e(Fy,n,8)-e(Fy,ny,84)-8(Fy,ny,84) (n-ny)

-ttt (F),ny,85) (B-8,) < O (111-109)




for all (Fl,n, 6) e L (Flpnlasl):(Flt'QZsBz) ’

(Fl,n, B) # (Fl»n3. 63)

Let
£f(X) = le
n(X) = ng + e a(X)(ny-ny) on Np(0) (I11-110)
B(X) = B3 + ¢ a(X)(By-83)

where

eeR, e>0

a(X) is a scalar-valued continuous bounded
function on NR(o) such that

a(X) dv =0 (II1-111)
Ng (0)

It follows that for any a(X) an ¢ > 0 can be found such
that

(F1,n(%),8(0) ¢ L [(F),ng,8) (Fy,ny.85)] (11I-112)
It follows Ineq. (III-109), Eq. (III-112) that
e(Fy,n(X),B(X))~e(Fy,ny.81)-8(Fy,ny,85) (B(X)-84)
~tr TT(Fy,ny,84) (B0 -8;) < O (111-113)

It follows Eqs. (III-110), (III-111) that (£(X),n(X),R(X))
satisfy the constraints for Ineq. (III-16) and it follows
Ineqs. (III-113), (III-16) that

(F1.ng,83) £ D (III-114)

In other words
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not (III-107) (ITI-108) In any neighborhood of
= g (F B.) there is an
for (Fl.nl,Bl) for(Flnlel) 1'M1 P

But D is open by definition; therefore it follows that

not (III-117)

Theorem 6 follows Eq. (III-116).
Q.E.D.

An equivalent for Theorem 6 follows easily Taylor's formula
with remainder.

Corollary

(Fl,nl,el) e D only if there is a neighborhood of
(Fl,nl,sl) such that for every (Fl,nz,sz) € N(Fl,nl,el),
(lenz’ez) # (Fl.nl.Bl)

2 ~
DO,n~n1.B-61 e(Fl,n,B) >0 (111-117)

(F{,n,B8) # (Fy,nq,8;)
Theorem 7
(F;,ny,81) € D only if
(a.) e, (Fyn;8;) = 0 & o(F ,n;,8)) =0
and énB(Fl’nl’Bl) =0 (III-118)
)T

(b.) tr [(82-81 QB] B(Fl’nl'el) =0 =

T ~ - -
t:.BBZ-Bl) ee]n(Fl'nl’Bl) 0 (I11-119)
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Proof

It follows Eq. (IIX-18) that

= N ) . ‘T~
6 - tr[F eF]n(Fllnlp Bl)+enrl(F1,n1,Bl)n+ tr [6 eB]n(Fl’nl’Bl)

(111-120)
for any path with tangent (F,n,8) at (F;,n;,8;).
gow assume enn(FranI) = 0 and not both an(Fl,gl,Bl),
eBn(Frnrsl) are zero. It follows Eq. (III-120) that there
is a pair (Fl,Bl) # 0 such that (i.e. n = 0)

F

181 58 # 0 (I1I-121)

Furthermore it follows Eqs. (III-121), (III-120) that

él,ﬁ,él >0 # 0 for all n (IT1-122)

Eq. (III-122) contradicts Eq. (III-100). Eq. (III-118)
follows easily. ‘

Now assume the contrary to Eq. (III-119): there is a
B, # By such that

T ~ _
tr Bez-sl) Sgys(Fy .8 = 0, and
T ~T
tr BBZ-BI) eBJn(Fl,nl,Bl) # 0 (III‘123)

Consider the second-directional derivative for F2 = F1 .
It follows Eq. (III-123)! that

2

~ - 2 A
Do’nz_nl,ez_el e(F1n181) = (712"711) eﬂfl(Fl’nl’Bl)

+2 er [(8)-8)T 841, (Fpuny,8))  (ITI-124)
for any (F11n2982) in N(Flpnlvel)




o

Let
ng = ny + E(nz-nl)

where e e R, e <1, c#0. (I11-125)

It follows Eqs. (III-124), (III-125) that

2 ~ - 2 2 ~
Do,n3-n1,82-81e(F1’n1’81) =t (nz‘nl) enn(Fl’"l’Bl)

T A
+2 e tr [(8y-8)T Bgq, (Fp.ny,8p) (111-126)

The first term on the right-hand side of Eq. (III-126) is
non-negative and even in e , and the second term is odd and
. . T ~ .
linear in ¢ . 1If t:[(Bz-Bl) eB]n(Fl,nl,Bl) # 0 it follows
Eq. (I1I-126) that there is an €1 such that

2

e <12
DO'"B‘“1'32'B1 e (Fy,ny,87) <0 (I11-127)

for all € between 0 and € -
It follows Eqs. (III-126), (III-127) that for any By 4 By
such that, Eq. (III-123)1 holds, there is an na#rh_such that

2

DO'“'“l'BZ'Bl e (Fl.nl,Bl) <0 (I11-128)

for al]. N € L[ﬂl:na], n#nlan * na

Ineq. (III-128) violates Ineq. (III-117); therefore
T -~

= tr [(8,-8) gy, (Fyny8p) = 0 (111-129)

Q.E.D.
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Theorem 8

Let (Fl,nl,el) eD, énn(Fl,nl,Bl) ¥ 0. Then for any
pair (FZ,BZ) in a neighborhood of (Fl,Bl), (FZ'BZ) b (Fl,Bl)
there is a unique n, in a neighborhood of ny such that the
second-directional derivative for the direction (FZ'FI' n-=n;,
62—81) is minimum for n =n, . Also the straight path
L [(Fr-“vsl)'@z'“z'ﬁz):] is tangent to an isotherm at (Fy,n;,8;)

(ﬂz‘nl) === 1

TA
2 s )‘{t? forpF gy Py my 8
nn 10 FL

2
D ~ _ 2 ~
Fy-F1,np-ny,By-8; €(Fy,ny,8y) = DFZ-Fl,o,ez—sle’(F1“1B1)

2 ~
‘(ﬂz‘nl) e,m(Fl,nl, 81)

2

D a _ 02
Fz'F]_;TI‘Tll; 32"61 e(Fl,nl. Bl) =D

F2'.'F1 »No=Nq» 32"31 e (Fl , 711. Bl)
2 A
+(n-n2) efm (Fl.nl. 81)

Proof

Consider a straight path L‘kFl,nl,Bl)(Fz,nz,Bzﬂ
represented by (F(s)n(s)g(s)) for 0 < s < 1 . The path
derivative is independent of s :

(F,n,8) = (Fp=F,ny=ny,85-61) (111-131)
If §_ (Fy.ny,8;) # 0, it follows Eq. (III-37) evaluated

n
for 8 =0, Eq. (III-131), and Eq. (III-130)! that
L[(Fl'“l'el)’(FZ’”z'Bz)] is tangent to an isotherm at
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(Fl,nl,sl) . Now expand the second-directional derivative
for the direction (FZ-Fl,rL-nl,B_z-Bl)

2 A 2 A
D _ _ _o €(Fy,ny,87) =D _ _, €(Fy,nq,87)

+ Zé:r [(FZ-F]_)T 8F]n(F1’nl’ By) +tx [(BZ-Bl)TeB] n
(Fl,nl.Bli}(n-nl) (I11-132)
+ (aen)? & (Fping,8y)
With some algebra it is easy to show

= 2(np-ny) (n-n;) + (n-n1)2 = -(nz-n1)2+(n-n2)2 (III-133)

Equation (III-IBO)1 is used to eliminate the second term on
the right-hand side of Eq. (I1I-132) and then Eq. (III-133)
is used to rearrange the terms :

2
~ _ 2 ~
FZ-Fltn-nlvBZ-Bl = (Flanlpsl)"DFZ_FI,O’BZ_Ble(Fl;nlyel)

D
2 A
2 P
+(n-n,) enn(Fl’“l'Bl)

(II1I-134)
Equation (III-130)° follows Eq. (III-134) for n =n,
Equation (III-130)3 follows Egs. (III-130)2 and Eq. (III-134).
Also it follows Eq. (III-81) that

enn(Fl,nl. 81) ¥ 0 -benn(Fl’nl’Bl) >0 (III-135)
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It follows Egs. (III-130)3, (II1-135) that the second-directional
derivative for the direction (F2-F1, u—nl,Bz-Bl) is minimum
for n = ny -

Q.E.D.

Theorem 9

Let (Fl,nl,Bl) € D and there exist a pair (nz,sz)
# (n;,8;) such that

2 ~
D e (Fy,ny,87) =0 (I11-136)
0,“2‘“1,62'81 1 1 1

The following Ineqs. are equivalent:

(ny-n)? & (Fy.ng,8y) # 0

2 ~
DO’O’BZ—Bl e(Fl,nl,Bl) # 0

er [(85-81)Tég7 (Fponp B (mpmnp) # 0 (I11-137)

Also if (n,-n )2 e (F,,ny,B8,) # O the straight path
21 nn+,1’"1’"1
L kFl,nl,Bl)AFl,nz.Bzi is tangent to an isotherm at

- tr [(Bz'Bl)T aB]n(Fl’nl’ Bl) (nz‘nl) = (nz-nl)z ann(Fl.nl. 81)

= pl A
- DO,O,BZ-BI e(Flpnlsel) > 0

(III-138)

Proof

Let (n,sz) ¥ (nl,sl), then expand the second-directional

derivative:

2 A 2 A
Do' n_nl , Bz_Ble(Fl’ nl ’ Bl) = (n-nl) enn(Fl ’ nl ’ 81)

; T » 2
+ 2 tr [(32"81) eB_]n(Fl'“l' Bl) + DO’O’BZ_Blé(Fl,ﬂl. Bl)

(1I1I-139)




It follows Ineq. (III-117) that

2

(Fy»ny.81) € D= D5 nony.8,

Assume Eq. (III-136) and it follows Eq. (III-140) that

2 2

Do.n-nl.Bz-Bl e(Fl’nl'Bl) 2 DO,”z‘nl;Bz'B

le(Flpnl: Bl) = 0

(I1I-141)
for all n .

Now assume Eq. (III-137)1. It follows Egs. (III-137)1,
(I1I-81) that

nz-nl ¢ 0

It follows Theorem 8 that I.BFanBZ),(Fl,nl,Bl)] is tangent to
an isotherm at (Fl,nl,el). It follows Eqs. (III-130), (III-141)
that

- tr [(32‘81)381 n(Fl’ nl ’ Bl) (712‘711) = (712'711)2 énn(Fl AL B].)

2

e - 2 4 (I1I-143)
030’ Bz'Ble(Fl,nl’Bl) - (nz-nl) enn(Fl’nliel)

D
It follows Eqs. (III-142), (III-143)
(III-136),(III-137)1 =t (III-137)2’3, (I11-138) (I11-144)

Now assume Eq. (III-137)2. It follows Eqs.(III-118) and
(111-137)% that

82‘81 * 0
n_n
-1 *0

(III-145)




It follows Eq. (III-145)1+3, (I11-81) that
A 2
It follows Eqs. (III-145), (III-146), (III-144) that

(111-136), (I11-137)% = (111-137)%'3, (111-138)  (I11-147)
Now assume Eq. (111-137)3. It follows

(III-136), (III-139) => either (III-137)1

or (III-137)2 (I11-148)
It follows Eqs. (III-148), (III-144), (III-147) that

(ITI-136), (I11-137)3 = (111-137)1+2, (111-138)
(I1I-149)
Theorem 9 follows Eqs. (III-144), (III-147), (III-149).
0.E.D.

Theorem 10

Let (Frnrel) ¢ D. Then énn(Fl,nl,Bl) # 0 only if there
is a neighborhood of (Fl,nl,sl) such that for all (Fz,n3,82) e N

1

A ~ A T
e(FZ,n3, 32) -e(Fl’nl’ 81)' tx a TR (Fl.nl. 31) (FZ-FI)

~8(F ,n1,8;) (ng=ny)-tr TT(Fyn ;) (By-8)) >

G(Fzy nz. 82)‘8(1"1, nl. Bl) - tr 'pl_R TRT(F]_' nl. 81) (Fz‘Fl)

-6(F1' ‘\1. 31) (nz-nl)- tr ;T(Fl '"1’ 31) (82'31) (111‘150)




where
TA PN
(1) trleZ-Fl) eF]n(Fl,nl,81)+enn(F1,n1.Bl)(n2-n1)
+ tr [(Bz‘el)TaB]n(Fl,nl,Bl) =0
(ii) n3 # n2

Proof

It follows Ineq. (III-81) that
enn(Fl,nl,Bl) # 0 = enn(Fl’nl,Bl) >0 (I1I-151)

It follows Theorem 8 and Ineq. (III-151) that for any pair
(FZ,BZ) # (Fl’Bl) there is a unique ny such that
L[(Fl,nl,Bl)(Fz,nz,Bz)J is tangent to an isotherm at (Fl,nl,Bl)
and

2
Fy-F1.np-nq.85-84

2

D
F2-F1.n3-n1,82-

Ble(Fl,n1,31)>D e(Fyn;8p)

(I11-152)

where ny satisfies restriction (i)

and Ny satisfies restriction (ii} of Ineq. (III-150).
Represent the two straight paths parametrically:

(F(s),n(s),8(s)) e LL(Fyny8y),(Fp.np,8,)]

such that
(F(0),n(0),8(0))
(F(1),n(1),8(1)) = (Fy,ny,8,)

(Flvnltel)
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and
(F(s),n(s),B(8)) e LL(F n;8;),(F,,ng,8,)] (I111-153)
such that
(F(0),7(0),8(0)) = (Fy,n;,8)) ;
(F(l),ﬁ(l).B(l)) = (Fz»n3s82)

It follows Egq. (III-ll)1 that

2 ~ -
Dp | e(F(s)n(s)B(s)) and
Fy=F1.n3-n1.83-8)
D2 e(F(s),n(s),B(s)) are each continuous

Fop-Fy,np-ny,83-8

on 0 <s <1, and it follows Ineq. (III -152) that in any
neighborhood of s=0 there is an 81 # 0 such that

2
FZ-FI,HZ'UI.BZ-Bl

2

D
Fz'Fl:n3'n1’82‘B

18(F(s3),ﬁ(s3).6(s3)) > D

e(F(sy),n(s,),8(sy)) (I1I-154)

for all 89, S, such that

Let S be any value such that 0 < 8, < 83 - It follows
Taylor's formula with remainder that
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é(F(s,) .5(84)e(s4)-3(F1.n1. B) - pl—R trTRT(Fl,nl, B,) (F(s,)-F)

~8(Fy.ny,81) (is,)-ny)-tr T T(F),ny,8,) (B(s,)-B)

= 1452

2 DF(sa)’Fl'ﬁ(S4)'ﬂ1'5(34)-81e(F(85)’ﬁ(SS)’B(SS)) (III-155)

for some sg such that 0 < sg < s, , and

e(F(s,),n(s,),B(s,)-e(Fy,n,By)- pl—R tr BT (F),ng.8)) (F(s,)-F))
=8 (Fy.ny,87) (n(s,)=ny) = tr TT(Fy,ny,81) (B(s,)-81)

e(F(sgIn(sg)B(sg)) (II1-156)
F(Sa) 'Fln n(sl‘) 'nl ’ 6(54) "Bl

for some s, such that 0 < Sg < S,

It follows Eqs. (III-153) and Ineq. (III-154) that

D%(SA)'Fl'ﬁ@ay”ﬁg3(34)‘31é(F(S3)’ﬁ(s3)’8(s3) >
D§(34)'F1vn(s4)'ﬂ1.8(84)-81€(F(82)'“(52)’6(32))
(III-157)
for all S5, 85 such that
0 <s, < 81
0 <83 <5

It follows Ineq. (III-157) that the left-hand side of Eq. (III-155)
is greater than the left-hand side of Eq. (III-156), and Ineq.
(I11-150) then.-follows simply by replacing (F(s4),n(s4)8(s4))by
(F2n282) and 7-1(54) by N3 -

Q.E.D.
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Theorem 11

Let (Fl,nl,Bl) e D and %“ﬁFl.nl,Bl) # 0 . Ineq. (III-16)
is equivalent to the following: There is a neighborhood of the
function le on NR(O)(N(Fl)),a neighborhood of nl(N(nl», and
a neighborhood of Bl(N(Bl)), such that for all homeomorphisms
(on Ng(0)) £(X) € N(F)), and all B(X)eN(8,)

f E(F(D ,n(X),8(X) dV > &(Fy,ny,8)) V (I11-158)
N (0)

where (i) f(X)

F1X on aNR(O), and
F(X)

vE£(X) on Np(o)
an [ e@-g) av =0
Ng (0)

1

(iii) nX) = nl - {tr [(F(X)-Fl)Téan(Flynl, Bl)

+ trIKB(X)-BI)T;B]n(Fl.nl,Bli} for all XeNg(0)

(iv) (£(X),n(X),8(X)) # (Fy X,n;,8;) on Np(0)

Proof

It follows Ineq. (III-16) that

e(F(X),n(X),8(X)) dV > V e(Fyn;8) (I11-159)
N (0)

where (£(X),n(X),B8(X)) on NR(O) are restricted as follows
(1) £(X) = F1X on aNR(O), and
F(X) = V£(X) on NR(O)

) f Bm-s) av =0
Ng (0)




(iii) f (n(X)-ny) dvV =0
NR(O)

(iv) (£(X),n(X),B8(X)) # (FyX,n,8)) on Ny(0)

Since the restrictions for Ineq. (III-159) satisfy the
restrictions for Ineq. (III-16) it follows that

(II1-16) = (III-159) (I11-160)

Now let (£f(X),n(X),B8(X)) on NR(O) be generalized to
satisfy the restrictions for Ineq. (III-16). Let

1 n(X) dv
NR(O)

Na

gB(X) dv (I1I-161)

Ng (0)

By =

"
< I

Ineq. (III-16) is equivalent to the following:

‘/. a(F(X),ﬂ(x),S(X))’é(Fl,nzyez) dv
Ng (0)

+ v(e(Fl'HZ'82)—e(F1’n1’81)) > 0 (III‘162)

where (i) £(X) F1
F(X) vE(X)

(ii) f (B(X)-8,) dV
Np (0)

X on aNR(O), and

n
o

i) [ (X -ny) 4V =0
Np (0)
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(1v) (£(X),n(X),8(X)) # (F;X,ny,8;) on Np(0)
(v) 6(F1,nl;81)(n2‘n1)+tr ?T(Fl,nl,Bl)(Bz-Bl) =0

Note that restriction (v) follows Egs.

(I1I-161) and restriction
(ii) for Ineq. (III-16).

Note also that the restrictions of

n(X),B(X) on NR(O) to N(nl),N(Bl) and Eq. (III-161) insure that
(Fl,n2,82) e D .

(fX),n(X),B(X)) = (le,nz,sz) on NR(O) satisfies the
restrictions to Ineq. (III-159).

It follows Ineq. (III-159)
that

é(Fl,nz,BZ)-é(Fl,nl,Bl) >0 (I11-163)
Also since (Fl,nz,ez) e D it follows Ineq. (III-159) that

e(F(X),n(X),8(X))-&(F ,ny,8y) dV > 0 (11I-164)
Ng (0)

It follows Ineq. (III-163), (III-164), (III-162) that

(ITI-159) = (III-16) (III-165)

Then it follows Eqs. (III-160), (III-165) that

(I11-16) < (III-159) (II1-166)

Now let (£(X),n(X),B(X)) on NR(O) satisfy the restrictions
for Ineq. (III-159), and define n(X) on NR(O) as follows:

- 1 A
(X)) = n; - tr [(F(X)-Fy)ez . (Fy,ny,84)
n 17 & T, B [ 1’¢fn 10 M0 Py

+ tr EB(X)_Bl)TaBJn(Fl’nl'Bli} (III-167)

where it is assumed

60




enn(Fl,nl,Bl) * 0 (111'168)

Let B represent a constant second-order tensor on NR(O).
It follows Green's transformation that

tr B(F(X)-Fl) dv = tr{%(f(X)-Fl(X)) dA} (III-169)
NR(O) BNR(O)

It follows Eq. (III-169) and restriction (i) for Ineq. (III-159)
that

tr B f (F(X)-F;) dV = 0 (111-170)
Ng (0)

The integral above is a tensor, and Eq. (III-170) states
that it is orthogonal to B . But B was chosen arbitrarily.
The only second-order tensor which is orthogonal to all second-
order tensors is the zero tensor. It follows that

restriction (i) = f (F(X)-Fl) dv = 0 (III-171)

Ng(0)

Now integrate Eq. (III-167) on NR(O) and it follows Eq. (III-171)
and restriction (ii) for Ineq. (III-159) that

(n(X)-ny) dv =0 (I1I-172)
NR(O)

It follows Eq. (III-172) that n(X) on Np(0) defined by Eq.
(ITI-167) satisfies restriction (iii). In other words, for
Ineq. (III-159)

61




restrictions (i), (ii)
= restriction (iii) (I11-173)
and Eq. (III-167)

It follows Ineq. (III-159) that for any £(X),8(X) satisfying
restrictions (i), (ii) and n(X) from Eq. (III-167)

(&(F(X),n(X). 3 X)-&(Fy,ny,8y)) dV > 0 (I11-174)
Ng (0)
It follows Theorem 10 that

1

-6<F1,n1,sl>(n<x>-n1>-tr% (Fl,nl,Bl)(B(X)-Bl) >

1"T

-5(F1’n1.61)(ﬁ(X)-nl)-tr? (Fl,nl.Bl)(B(X)-Bl) (I1I-175)
for all X ¢ NR(O), and n(X) # n(X)

Now integrate Ineq. (III-175) on NR(O), and it follows restrictions
(ii), (iii) andEgs. (III-171), (III-172) that

(e(F(X),n(X),B(X))-e(Fyn8;)) dV >
N (0)

(&(F(X), R(X),B(X)) -8 (Fy,ny,8))) &V (I111-176)
N (0)

for all n(X) # n(X) on NR(O)

It follows Eqs. (III-176), (III-174) that Ineq. (III-159) for
n(X) on NR(O) is both necessary and sufficient. In other words
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Ineq. (1III-159) <= Ineq. (III-159)
with restrictions with restriction (iii)
(i) (1i) (iii) (iv) replaced by Eq. (III-167) (111-177)

Theorem 11 follows Eqs. (III-166), (II11-177).
Q.E.D.

Theorem 12

Let (Fl,nl,Bl)eD , B* ¢ By and LB* denote the straight
path in (n,B)-space, through (n,8) = (ny,8;), which is tangent
to an adiabat for (F,n,B) = (Fl,nl,el) , i.e.

_ 1 AT
Lox = {}n.s)lseL[el,B*j. RS Wil ay (Fl'”1’31)(3‘srq
1.”1: 1

(III-178)

For any neighborhood of Bl(N(Bl)) there is a neighborhood
of Fl(N(Fl)) such that for any erN(Fl), FZ#Fl, and
B*eN(8,), B* # 8; there is a pair (ng,By)elyy such that

2

A 2 ~
Dp . - e(Fy,nq,89) < Dp . - e(Fy,ny,8q)

(I1I-179)

for all (T];B)ELB* » (71,3) # (nzrsz) ’
and the equality holds only if

2

D0, ny-ny.8,-8, €F1o1:6) = O

(1)

PN 2 ~
0 9" e nz-nl + Do’n -n pB _B e(Flpnlnel) = 0
2 '1'F2° "1

0 By-8q (I1I-180)




2 ~ 2 ~
D e(F,,nq,By) = Dy _ e(F,,ny,8,)
F2‘F1.n2'n1.82'81 1 1 1 F2 Fl,0,0 l 1 1

2 A
" Do.ny-ny.8y-8y €F1oM1eEL)
(111-181)

2

2 ' A~ A
D e(F,,nq,87) = DL _ - _ e(F,,ny,8q)
1''1'"1 F2 Fl,nz nl,Bz Bl, 1'7'1'"1

Fz-Fl;n'nl:B'Bl

2 .2

+ (a-1) Do,nz_nl,82_61e(F1.n1,81)
(I11-182)
where a 1is uniquely defined by
(i) B‘Bl = 3(82'81) for (32‘61) # 0
D% _F - B_ é(Fltnltel) = D% _F 0 0 é(Fl’nl,Bl) (III-183)
27F1:n7N1. BBy 27F1- 0
if (i) (82-81) =0
Proof
Expand the second-directional derivative:
Df -F,meny.e-6, SF1N108) = D g oo E(Fyny.8p)
2 1;71 nl, 2 27%1 Y
2 A 2! 0 2| {n- (111-184)
* g, n-n,,8-8, €F1enpefy) + ae| ¢n-ny
1 1
0 S‘Bl
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It follows Ineq. (III-80) that

2

D0, n-ny, -8, €F1:m1:81) 2 0 (I11-185)

for »11 (n,B)elgy , (n,8) # (ny,89)
Let (n2,82) # (nl,Bl) satisfy the following:

T

F2-F1 ) 0
-~ 2 - _

where (nz,Bz)eLB* .

Let aeR;(n,8) on L, may be represented as follows:

B
n=n;+ a(nz-nl)
g = 61 + a(sz-el) (111-187)

where acR, and the pair ("2’82) satisfies Eq. (III-186).
It follows Eq. (III-187),(I1I-186) that

g ~Tr =N
§ 0y |o%e] gn-ny) + D3 neny, 8-8, 81" 8)
\ 0 p L - B-Bl
en) T ][ o
-l %ot [a% + a?p? &
ngthyf T A D°»”2'”1»Bz°31 (Fy.ny.89) (I11-188)
. 0 o e - BZ_B

and a =1 1is a root for Eq. (III-188). If

2

D0, ny-ny,8,-8,5F1 "1081) > 0
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it follows Eqs. (III-186), (II1-188) that

T
F,-F 0
2 1 2A 2 ~
0 37e No=np ) = -DO,n o Ba-B e(Fl,nl,Bl) < 0 (I11-189)
2 '1'F2° "1
0 62'81
and tge root for Eq. (I1I-188) - i.e. a =1 - is unique.
(I11-188) that
T
F,-F 0
2 1 2/\ 2 A
2 '1'"2° "1
0 32'81

and the root for Eq. (III-188) is not unique. It follows Egs.
(1I1-187), (III-189), (III-190) that Eq. (III-184) has the following
representation:

2 ~ 2 ~
D e(F » N ,B ) =D - e(F N 1B )
F2‘F1,n-nl,8-81 1 1 1 FZ Fl,o,o 1 1 1
2 ~
+ a(a-2)DO,n2_n1’62_Bl e(Fy.ny,8;) (I11-191)

and

2

5 2
Fy-Fy,np=ny.B85-Bg

e(Fl.nl.Bl) = DFZ-FI'O'O e(Fl,nl.Bl)

2

-D _o €(Fy,nq,84) (I1I-192)
0)”2’”1962 81 1 1 1

It follows Eq. (III-191), (III-192) that

2

D 2
Fz-Fl.n-nl.B-Bl

e(F,,n,,8,) = Dz _ _ )
1 1 1 F2 Fltnz nlpBZ Bl

e(Fl.nl.Bl)

2 2
DO,ﬂz'ﬂlng'
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Equation (I11-180) follows Eq. (I111-186); Eq. (III-181) follows
Eq. (III-192); Eq. (III-182) follows Eq. (III-193); Eq. (III-183)
is trivial; Ineq. (III-179) follows Eq. (II11-182) easily.

Q.E.D.

Theorem 13

Let (Fl,nl,Bl)eD and F2 in some neighborhood of Fl
There is a pair (ﬁz,ﬁz) and a neighborhood (N(nl,Bl))such that

2
Fo-Fy.np-ny,By-8y

2

D
FZ-FI ’ ﬂ'ﬂl ’ 8"31

e(Fl.nl.Bl)
(111-194)

e(Flnnl)Bl) <D
for all (n,B)eN(nl.Bl) such that
(1) 6, (n-ny) + tr T{(B'Bl) =0

Proof

The proof of this theorem follows theorem 12. 1Ineq.
(I11I-179) holds for each LB* . It follows Eq. (III-186) and
Eq. (II1-11)! that the vector (ny-n,,8,-8,) is bounded if
(Fy-F;) is bounded for each Lox - Also the map F,-F, —
Ny-n;,B85-8; is linear. Since thelvector (Fp=F;,np~n1,8,-87)
is bounded, it follows Eq. (III-~11)" that

2

D 8 &(Fy,ny,8y) is bounded for any Lox

Fg-F1.np=ny.B89-8y

(I1I-195)




Now hold F2 fixed and consider the value of the second
directional derivative for different LB*'s . It follows Eq.
(III-190) that there must be a infinum for the values; let
Lﬁ* and (EZ,EZ) correspond to the infinum. It follows that

2
Fy-Fy.np-n1.85-8y

2

D - -
Fy-Fy.ny-ny.89-8;

e(Fl,nl:Bl) < D e(Fl;ﬂl;Bl)

for any Lox (I11-196)

Ineq. (III-194) follows Ineags. (III-196) and (III-179).

Q.E.D.
Theorem 14

The caloric equation of state, Eq. (III-lO)l, is invertible
in n and the inverse is differentiable. A state (F,n,B8 ) is
uniquely characterized by the triplet (F,e,B), where e 1is the
value of the internal energy density which corresponds to the
state (F,n,B). Let #f(F, e, R) represent the inverse function:

A(F,e,B) is the inverse of &(F, ,B) on D,

A(F,e,B) is differentiable on the inverse (III-197)

of D, and the map

(F,n,B) «———> (F,e,B) is a diffeomorphism on D (III-198)

Proof

Let (Fl,nl,Bl)eD . Because D 1is open it follows that there
are neighborhoods of (Fl’"l'Bl)’ N(Fl,nl,al), such that N(Fl'”l'
B)CD. Let (Fy,ny,8;) —>8,, e; . It follows Eqs. (III-18)2,
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)1,3

(I11-11 that

e(F,n,B) is differentiable, strictly increasing, and

convex in n (I11-199)

Therefore for (F,n) = (Fl,nl)

F,,8
n —l——L-e differentiable, strictly

increasing, and convex on D (I11-200)

Since the inverse was defined for an arbitrary pair (Fl,Bl),
the definition may be extended onto the image of D:

n=~f(F,e,g) on the image

of D
>N (111-201)

or (F,e,R)
Choose a neighborhood of Ny f(nl):
£(ny) = {nlny < n < nyl
where N <N <Ny (I1I-202)
Define e, ey as follows:
e = é(F,nL.B)
on D

ey = e(F,nU,B) (I11-203)

It follows the continuity of e(F,n,8) and Eq. (III-202) that
a neighborhood of (Fl,Bl), N(Fl,sl) exists such that

e(F,n;,B) < e
L 1 (III-204)

g(F:nu. B) > el
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e .
Let min. max.

of ey respectively:

, € represent the inf of er and the sup

e in. = inf e(F,n;,B)
on N(Fl’Bl) (III-205)
®max. - SYP é(F,nU,B)
It follows Eq. (III-205), Ineq. (III-204) that
€nin. < ©1 < ©Cmax. (I11-206)
Define a neighborhood of e; as follows:
N(el) = {elemin < e < emax.} (111-207)
It follows the above construction that
(F,e,B) [ (F,B)eN(Fy,8;),eeN(ny) =
(F,e,B) —> neN(n;) (I1I-208)

In other words for any neighborhood of n, a neighborhood
of (Fl,el,Bl) can be found such that the image of N(Fl,el,sl)eN(nl).
It follows that

(F,e,B) —> n is continuous on the image .
of D . (I11-209) }

It follows Eq. (III-209) easily that

(F,e,8) —> (F,n,B) is continuous on the image
of D . (I11-210)

Now assume ﬁ(F,e,B) is differentiable and derive the
partial derivatives by implicit differentiation:
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s s el S0

&p(F,n(F,e,8),8)
e, (F,0(F,e,8),8)

nF(I"ae)B) = -

1
én(F,ﬁ(F,e,s),B)

ne(F,e,8)

éB(F,ﬁ(F,ﬁ(F,e,B)e)
- - _ (I11-211)
en(F,ﬁ(F,e,B),B)

A
nB(F.e,B)

It follows Inmeq.(III-11)3, Eqs.(III-210), (III-11)} that the
right-hand sides of Eq. (III-211) are bounded and continuous on
the image of D . Therefore Eqs. (II1I-211) define the partial
derivatives of ﬁ(F,e,B) and it follows Eq. (III-210) that

(F,e,8) — (F,n,B) 1is diffeomorpic on the image
of D . (I111-212)

Existence of the inverse follows Eq. (III-20l); its continuity
follows Eq. (III-209); finally its differentiability follows

Eq. (III-211).
0.E.D.

Some topological properties of D follow directly
Theorems 4 and 13.

Corollary
The maps
(F,n,B) «> (F,0,B) «—> (F,e,B) (II1-213)
are homeomorphic on D . Therefore D preserves its topological

properties under these maps. Therefore a state in D 1is
completely characterized by any one of the triplets - (F,n,B)
(F,0,8), or (F,e,B) . All of the state variables may be represented
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as functions of (F,8,8) or (F,e,B8) in addition to (F,n,8)
The following notation will be used for these representations:

e = e(F,8,8)
Ty = Tg(F,0,8) on D (111-214)
1 = 1(F,0,R)

n = n(F,6,8B)

»

n = n(¥F,e,B)
T, = % (F,e,B)
R 'R on D (111-215)
8 = 6(F,e,B)
1 = 12(F,e,B)

Theorem 15

Let (Fy,ny,8)eD, F, # F; . Let (ﬁz,ﬁé) and N(n;,8;)
correspond to F2 according to theorem 13. Let (Fz,n,B) ]
represent any triplet in D such that L[(F;,n;,8;), (Fp.n, B)]
is an adiabatic tangent at (Fl,nl,Bl). Then there is a neighbor-
hood of (Fl,nl,el)(N(Fl,nl,Bl)) such that for all states
(Fy,n,B)eN(Fy,ny,8;), which do not correspond to theorem 13,

e(Fy.n,8) > &(F,,0,,8,) (I11-216)
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Proof

Let N(Fy,ny,8;)eD and (F,,n,,8,),(F,y,n,B)eN(Fy,ny,84),
f F1 , according to the prescription of the above theorem
It follows theorem 13 that

2

D 2
FZ-F].’ ﬂ"'Y]I, B'Bl

e(Fltn]_)Bl) > DF e(Flynlyel)

27 Fpinp-ny.By-8g
(III-217)

Let (F(s),n(s),B(s)) represent the state and e(s)
represent the internal energy density on L[}F Ny 81)(F2 n, 8)]
and (F(s),n(s),B(s)), e(s) represent similar parameters on
L EFl.nl,Bl)(Fz,nz,Bzﬂ , where s is the path parameter:

(F(s),n(s),B8(s)) = (1-8)(Fy,ny,8) + s(Fy,n,8)

e(s) = e(F(s),n(s),B(s)) and

(F(s),7(s),B()) = (1-8) (Fy,ny,8;) + s(F,,7,,5,)

e(s) = e(F(s),n(s),B(s)) (III-218)

for 0<s <1

It follows Eq. (III-ll)l, (III-18) and Taylor's formula
that there is a neighborhood of zero (N(0)) such that for
seN(0)

e(s)-e(0) = str g; T (Fy.ng,81) (Fy-Fp)

2

5 2
+ 2 DFz‘Fl N n-nl, B'Bl

e(Fl,n1,61)+... (I11-219)

— _ 1 AT
e(s)-e(O) = 3tr SE TR (Fl,nl,Bl) (FZ-F].) ]!
| s? 2 & ( ) ?
i’ + - - _ T - e(F,,ny,B)+. .. !
7 "Fy~Fy,np-ny.Bp-8p 1771071
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or

2
- _ s 2 ~
e(s)-e(s) = % [DFZ'Fl’”'”l'B'Bl e(F;,nq,89)

2 ~
-D = e(F,,nqy,87)
F2'F1,n2'n1; 82, 81 1 1 1]
o (I11-220)

for all seN(0)

Ineq. (III-216) follows easily Eqs. (III-217), (II1-220).

Q.E.D.
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IV. GLOBAL STABILITY

In this report '"global stability'" will refer to stability
of a finite body (B) . Two types of global stability will
be defined and analyzed. The definitions are generalizations of
the definitions given by Coleman and Nollg. In the following,
the concept of a global state and a neighborhood will be used.
Also the caloric equation of state, Eq. (III-lO)l, and the
stress temperature and substate relations, Egs. (III-18)1’2
and (III-35), are assumed.

Definition of Global State

A "'global state" {x,n,B} of a body (B) 1is a configura-

tion x of B (i.e., x = x(X) ), an entropy distribution of
B (i.e., n = n(X) ), and a substate distribution of B (i.e.,
B = B(X) ).

A neighborhood in global state-space is defined by the
following metric:

s({x,n,8), (Rxn¥ex}) = SUPL|R%(X)-%(X) |

+ [P Y@F@) -I] + [n*-n] + [8* L@e)-1  (IV-1)

Note in the above definition of the metric that the
rotation tensor of F* is not restricted.

Corollary 1:

The restriction to a neighborhood in global state-space
also restricts each local state to a neighborhood in state-
space, i.e.,
{x*, -+ B*} ¢ neighborhood of {x,n,B8} <> (F*(X),n*(X),B*(X))
e neighborhood of (F(X),n(X),B(X)) for each XeB

(IV-2)
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One other concept will be required for the definition.
Consider the external supply of heat at X .

qX) = 8(X)A(X) + tr(tI(X)B(X)) (1IV-3)

If this equation is integrated on a path while holding the
temperature and substate tension fixed, the result has the
appearance of a potential for heating.

Aq(X) = B(F(X),n(X),8(X)) (n*(X)-n(X))
+ tr TH(F(X),n(X),8(X)) (B (X)-a (X))  (IV-4)
If Aq(X) 1is divided by 6(X) the result has the appearance

of entropy supply, which will be used for the definitions of
global stability.

Definition of the Virtual Supply of Entropy (h%*)

The virtual supply of entropy is defined by the following
equation:

T
(n*(X)~ (X)) + tr TEX),nX), B8 (gw(x)-g(x))

h* = h*(X) _
8 (F(X),n(X),B(X))

"

(IV-5)

Definition of Global Adiabatic Stability (GAS)

Let {x,n,8} be a state of B and let E be the total
internal energy corresponding to the state {x,n,8} . The
state {x,n,B} is an "adiabatically stable state of B " if
and only if there is a neighborhood of {x,n,8} such that
every global state {x,n*,8*} in the neighborhood with the same
configuration and constrained to zero virtual entropy supply
has a greater total internal energy than the global state
{x,n, 8}
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B a0 e

N

E* = fa(p(x),n*(x),s*(X))dM > E = fé(F(x),n(x),B(X))dM
B B

(IV-6)
where
(i) {x,n*,8*} ¢ neighborhood of {x,n,B}

(ii) fﬁ*(x)dM =0
B
(iii) {x,n*,B*} # {X,n,a}

A shorthand notation for the above property is {ﬁ,n,B} of
B is GAS.

Theorem 1

A necessary condition for {x,n,8} of B 1is GAS is
that the temperature is uniform on B , i.e.,

8 = 8(F(X),n(X),B(X)) is independent of XeB (IV-7)

Proof

The following variational statement is equivalent to GAS
Of {ﬁpn,s} of B :

fé FX),n*X),p*(X))dM is locally minimum
B

for {X,n*, B*} = {x,n,8) (IV-8)

where the comparison states are constrained by

AT
fE*(X) + tr = (FX) ,n(X) , (X)) g*(X){ dM = constant (IV-9)
B 8 (F(X),n(X),B(X))

It foliows that the first variation of
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fé(F<X),n*(x>,e*<x> - x[n*<x>+tr K(F(X)'“"O'B‘X”eﬂx)]dn
4 8(F(X) ,n (X),8 (X))

(1IV-10)
subject to restriction (IV-9) vanishes for (n*(X),s*(X))
= (n(X),R8(X)) . Here X 1is a constant Lagrange multiplier.

It follows Egs. (III-18)2, (III-35) that the first
variation of

e(F(X),n*(X),8%(X)) - 8(F(X),n(X),8(X))n*(X)
- tr TT(F(X),n(X),B(X))B*(X) for XeB (IV-11)

vanishes for (n*(X),B*(X)) = (n(X),B(X)) but for unrestricted
variations.

Integrate (IV-11) over B and subtract the result from
(IV-10), and it follows that the first variation of

Fal AT
f(e<F<X),n(X),s(x)) - x)[n*(x) + tr TER),nX), X)) gu(x) | am
4 8(F(X),n(X),B8(X))

(IV-12)

vanishes for n*(X),B*(X)) = (n(X),B(X)) and the variations
are constrained by Eq. (IV-9).

Setting the first variation of (IV-12) to zero it follows
that

f(é(F(X).n(X),B(X)) - MDe(Xyam = 0 (IV-13)
B

where ¢(X) 1is any continuous function on B such that

(1) f¢(X)dM =0

B
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The only functions on B which are orthogonal to all ¢(X)'s
are constants, i.e., 6(F(X),n(X),B8(X)) - A is a constant.
But since A itself is constant, it follows that the

temperature must be constant. Q.E.D.

Definition of Scaled Global State

Let {ﬁ,n,e} be a global state of B with other
properties Tp(X),8(X),7(X), and e(X) . Let B represent
a geometrically similar body with scale a - i.e.,there is a
map from the reference configuration of B onto the reference
configuration of B :

B—2 ., B

where aceR, a > 0 (IV-14)

Let X represent the material coordinates of B , then

X = aX (IV-15)

Also all other properties of the material (i.e. stress,
temperature, etc.) at X are equal to the same properties
of B at X .

Let {x,n,B} represent a global state of B . The
state {x,n,B} is called a scaled global state if

X(X) = ax(X)
n(X) = n(X)
B(X) = B(X) (IV-16)

and

5(X) = 8(X)
TX) = 1(X)
eX) = e(X)

(IV-17)




Of course it is assumed the two bodies are of the same
constitution - i.e., they obey the same caloric equation of
state. Then Egs. (IV-17) follow Egs. (IV-16).

Theorem 2

Let {x,n,B8} be a global state of B and let {x,n,B} of
B be a scaled global state. Then

{x,n,B} of B {X,7,B} of B
- (IV-18)
is GAS is GAS

Proof

Let Ineq. (IV-6) represent the property for B . It
follows implicit differentiation of Eq. (IV-16)1 that

FX) = FX) (IV-19)

and it follows Eq. (IV-15) that
M = a3 aM ' (IV-20)
Let the comparison states be scaled:

n*(X)
B*(X)

n*(X)
B* (X) (Iv-21)

Substitute Eqs. (IV-16), (IV-19), (IV-20), (IV-21l) into Ineq.
(IV-6) and it follows that

fé(?('i),ﬁ*(i),ﬁ*(x)) aM >

B

f e(F(X) ,nX),8(X)) dM (1V-22)

B
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(i) {X,7n*,B*} ¢ neighborhood of {x,n,B}
i1y fEr® af = o
B
(iii) (X, 7*,B*} # {X,7n,8)
Every comparison state {x,n*,g*} for B has an image
{X,n*,B*} for B by Eq. (IV-21) and every comparison state

{X,n*,B%} for B has an inverse image {x,n*,p*} for B . It
follows that

Ineq. (IV-22) <= Ineq. (IV-6) . (IV-23)
The theorem follows Eq. (IV-23). Q.E.D.

Theorem 3

Let {x,n,8} of B be uniform - i.e.,F,n,8 are uniform
on B - and let {%,n,s} of B represent a uniform state on
B with the same values of F,n,8 . Also B is of the same
constitution as B but B is not related to B through a
simple geometric scaling. Then

uniform {;,H,B} of B uniform {x,n,B} of B

is GAS is GAS (IV-24)
Proof

1t follows Ineq. (IV-6) that the test for {§,n,B} of B is

fé(F.n*(X),B*(X)) dM > M e(F,n,B) (1IV-25)
B
(1) {%,n*,8*} ¢ neighborhood of {x,n,8}

(i1) fh*(X) dM =0
B
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(iii) {x,n*,B*} # {x,n,B8)}

where M = dm .
B

Now let B be a subbody of B :

XeB = XeB, X{oB (1V-26)

Choose comparison states for B which are zero on B-E, i.e.,

0
=3

n*(X)
for XeB-B (IV-27)
B

B*(X)

The comparison states represented by Eq. (IV-27) are a
subset of the comparison states for Ineq. (IV-25). It follows
the substitution of Eq. (IV-27) into Ineq. (IV-25) that a
necessary condition for Ineq. (IV-25) is the following:

fé(r,ﬁ*(xﬁ*(xn dm > M .e(F,n,B) (IV-28)

4 -—

B

(i) {x,7*,B*} ¢ neighborhood of {x,n,B}
(ii) fﬁ*(x) dm = 0

‘ E

(1ii) {x,n*,B*} # {x,n,8)

where M = j.&n
B

Since it is a necessary condition it follows that

uniform. {X,n,B} of B uniform {x,n,B} of B
=>

is GAS is GAS (1V-29)




Now let B be a body of the same constitution as B and

scaled from B by a :

]

| I (1IV-30)

Choose a > 0 1large enough so that B 1is a subbody of B -

XeB => XeB, X{oB (IV-31)

The scaling of uniform {xX,n,8} of B to B retains the same
uniform triplet (F,n,B). It follows theorem 2 that

uniform {Q,n,B} of B uniform {x,n,B} of B

is GAS is GAS (1Iv-32)

Since B is a subbody of B the roles of B, B may be
replaced by B, B respectively in Eq. (IV-29):

uniform {x,n,B} of B uniform {ﬁ,n,B} of B
is GAS is GAS (IV-33)

It follows Eqs. (IV-29), (IV-32), (IV-33) that

uniform {x,n,8} of B uniform {x,n,B8} of B
is GAS <> is GAS >
uniform {x,n,8} of B (IV-34)
is GAS

The theorem (where B represents any body of equal constitution)
follows Eq. (IV-34). Q.E.D.
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Theorem 4

Let the triplet (F,n,B) represent a state, and let
{%X,n,B} represent a uniform state of B which corresponds to
(F,n,B). Then

(F,n,R)eD => uniform {x,n,B} of B
is GAS (IV-35)

where B 1is any body.
Proof

Let {x,n,B8} of B be uniform. It follows theorem 3 that
any B may be chosen. Choose B to correspond to a spherical
neighborhood of 0 in E3(NR(O)) . It follows that Ineq. (IV-6)
for any B 1is equivalent to the following:

e(F,n*(X),8*(X)) dm > M e(F,n,8) (1V-36)
NR(O)

(i) {&,n*,B*} ¢ neighborhood of {x,n,8}
(ii) f h*(X) dm = 0
Ry (0)
(iii) {x,n*,8*} # {X,n,8}

It follows Eq. (IV-1) that restriction (i) is equivalent to
n*(X)eN(n) and Bg*(X)eN(B) . Since 6 and T are uniform
it follows Eq. (IV-15) that restriction (ii) is equivalent to

6 (n*(X)-n) + tr TI(B*(X)-8) dM = 0 . Also since opp is
(0

uniform, Ineq. (IV-36) has the following equivalent representation:




f e(F,n*(X),B8*(X)) aV > V e(F,n,B) (IV-37)
NR
(1) n*X)eN(n)
on NR(O)
B*(X) eN(8B)
(ii) J B(n*(X)-n) + tr TT(B*(X)—B) v = 0
R(O)

(iii) either n*(X) # n or B*(X) # B on NR(O)
The comparison states for Ineq. (IV-37) are a subset of
those for Ineq. (III-16). It follows easily upon comparing

Ineqs. (III-16) and (IV-37) that

Ineq. (III-16) => Ineq. (IV-37) , or

(F,n,8)e D = uniform {x,n,8} of N (0) (IV-38)
is GAS
The theorem follows Eq. (IV-38) and theorem 3. Q.E.D.

Theorem 5

The substate tension (1) is the '"force of constrain”

necessary to prevent spontanious substate processes.

Proof

Consider uniform {ﬁ,n,B} of B which is GAS. Restrict

the comparison states sc that n*(X) = n and [(B*(X)-8)dm = 0.
B

It follows Ineq. (IV-6) that

fé(F,n,e*<x>> - &(F,n,8) dM > 0 (1V-39)
B

85

H




e s e

where
(i) {§,n,8*}e neighborhood of {x,n,B8}

(ii) (B*(X)-B) dM = 0
B

(III) {x,n,B*} # {x,n,8}

Now multiply restriction (ii) by a constant Lagrange multiplier
(2) and add to the above integral:

‘J}?(F,n,s*(X)) - e(F,n,B8) + tr A(B*(X)-)]dM > 0  (IV-40)
B

where restriction (ii) still applies.

Now if X 1is chosen equal to -TT, it can be proven
that Ineq. (IV-40) holds independent of restriction (ii).
Following concepts in classical mechanics, 1 1is
interpreted as the "force-of-constraint' necessary to insure
the persistence of 8 . Q.E.D.

One type of global mechanical stability will be
discussed, but first certain conditions of mechanical equilib-
rium will be reviewed.

Definition of Mechanical Equilibrium

A state {x,n,8} of B 1is a state of mechanical equilibrium
if the stress (fR(X) = fR(F(X),n(X),B(X)) corresponding to
{ﬁ,n.B} satisfies the following equations:

DIV %R(X) + pgb(X) = 0

R 7 LT on B (IV-41)
TR(X)F X)) = F(X)TR xX)

where b(X) 1is a body force field and DIV is computed
relative to the material coordinates.
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Theorem 6

{x,n,B} of B 1is a state of mechanical equilibrium is
equivalent to the following:

ftr 1 ’:A[‘RT(X)(F*(X)-F(X))dM
2 ‘R

- f (x* (0 -% (X)) Tp () da + fb<x> (x% (X) =x (X)) 4
S B

(1IV-42)

where x* = x*(X) 1is any differentiable configuration of
B, and S 1is the surface of B .

Proof

Multiply Eq. (IV-41)1 by x*(X)-x(X) and integrate over

f(;?*(m -X(X))DIV T (X)dv + f(i*(X)-ﬁ(X))b(X)dM =0
k B B (IV-43)

Green's theorem gives

f(f:*(x)—f:(X))DIV %R(X)dv = f(;:*(x)-i(X))'i‘R(X)dA
B S

- f tr L 'i‘RT(X) (F*(X) -F(X) ) dM (IV-44)
g ‘R
Eq. (1V-42) follows easily Egs. (IV-43) and (IV-44). O.E.D.

Definition of Global Adiabatic Mechanical Stability with
Fixed Boundary

A state {x,n,B} of B 1is called GAMSFB if and only if
(a.) {x,n,8) of B 1is a state of mechanical equilibrium
for zero body force,
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(b.) the temperature is uniform, and
«¢.) there is a neighborhood of {x,n,B} such that for
all {x* n*,g*} in the neighborhood

fé(F*(X),n*(X),e*(x» dM > f?e(F(x),n(x),e(x)) dM

B B
(i) fﬁ*(X) dM = 0

B
(i1) x*(X) = x(X), for XedB

(iii) {x*,n*,8%) # {x,n,8) (IV-45)

Theorem 7

{x,n,8} of B = {x,n,8} of B (IV-46)

is GAMSFB is GAS
Proof

The comparison states for Ineq. (IV-6) are a subset of
those for Ineq (IV-37). It follows easily that

Ineq. (IV-37) => Ineq. (IV-6) (IV-47)

The theorem follows Eq. (IV-47). Q.E.D.
Theorem 8

Let {x,n,B} be a global state of B and let (X,7,8)
of B be a scaled global state. Then

{x,n,8} of B < {X,n,B} of B (IV-48)
is GAMSFB is GAMSFB
Proof

Let {x,n,8} of B be GAMSFB. It follows the definition
of GAMSFB and theorem 6 that the following are necessary and
sufficient.
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f er L Tp ™ (X) (F*(X) -F(X)) dM
B 'R

- f (x*(X) -%(X)) Tg(X) dA
S

(IV-49)
and

fg(F*(X).n*(X).B*(X) dM > fé(F(X).n(X).B(X)) dM (IV-50)
B B

(1) fﬁ*(X) aM = 0
B

(ii) x*(X) = 2(X) for XedB

(111) {x*,n*,g*} ¢ {X,n,B)}
It follows Eq. (IV-15) and implicit differentiation of
Eqs. (Iv-16)1, (1v-17)! that

3B —2— 38

dM = a3dM
. F(X) = F(X)
== 1
v TR(X) =V TR(X) 5 (IV-51)

It follows Eqgs. (IV-51)3’4, (IV-17)1 and Eq. (IV-41) for zero
body force that

{ﬁ.n,B} of B 1is a state e=» {x,n,8} of B 1is a state

of mechanical equilibrium of mechanical equilibrium
(IV-52)
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Choose comparison states for B as follows:

x*(X) = ax*(X)

n*(X) = n*(X)

Br(X) = B*(X) (IV-53)
Substitute Eqs. (IV-53), (IV-51)3, (Iv-16)2'3, (Iv-17)
into Ineq. (IV-50) and it follows Eq. (IV-51)1:2 that

Ineq. (IV-50) =

fG(F*(X).F*(X).E*(x)) dM > fE(F(X) ,N(X),B(X)) dM (IV-54)
B B

(1) fﬁ*(X‘) dM = 0
B

(11) x*X) = x(X) for x¢cB

(ii1) {x*,n*,B*} ¢ {x,n,B)

Every comparison state {x*,n*,g*} for B has an image
{x*,n*,B%} for B by Eq. (IV-52) and every comparison state
{X*,7%,8%) for B has an inverse image {x*,n*,g*} for B .
It follows that

Ineq. (IV-54) <= Ineq. (IV-50) = Ineq. (IV-45)

(1Iv-55)

The theorem follows Eq. (IV-52), (IV-55) and the definition

of GAMSFB.
Q.E.D.

Theorem 9

Let {%,n,B} of B be uniform and let {x,n,8} of B
represent a uniform state on B with the same values of
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F,n,8 . Also B 1is of the same constitution as B but B
is not related to B through a simple geometric scaling. Then

? : uniform {x,n,8} of B uniform {x,n,8} of B
=
is GAMSFB is GAMSFB (IV-56)
Proof

Body forces are assumed zero. It follows easily that
uniform states are states of mechanical equilibrium.

It follows Ineq. (IV-45) that the test of {x,n,B8)} of

E B 1is

fé(F*(X).n*(x).B*(X)) dM > M e(F,n,8) (1IV-57)
B

(1) fﬁ*(x) dM = 0
B

(11) x*(X) = x(X) for Xec3B

& | (111) {x*,n*,e*} ¢ {x,n,8)}

where u'-./:na

Let ¥ be a subbody of B :

xcE = XeB, X£3B (Iv-58)
Choose comparison states for B which are zero on B-K' {i.e.
X*(X) = x(X)
) = n(X) for XcB-§ (IV-59)
B*(X) = B(X)




These comparison states are a subset of the comparison
states for Ineq. (IV-57). It follows the substitution of Eq.
IV-59) into Ineq. (IV-57) that a necessary condition for Inegq.
(IV-57) is the following:

fa(F*(X).ﬁ*(X).B*(X)dM > M e(F,n,8) (1IV-60)

B
(1) fﬁ*(X) dM =0

B
(i1) X*(X) = x(X) for Xe3B

(iii) {(¥*,7%,B*} # {x,n,8) on B

where M = Jr'dM
B

Clearly Ineq. (IV-BO) is the application of Ineq. (IV-45) to
B . Since Ineq. (IV-60) is a necessary condition for Ineq.
(IV-57) it follows that

uniform {x,n,B8) of B uniform {x,n,B8} of B
is GAMSFB is GAMSFB (IV-61)

Now let B be a body of the same constitution as B
and scaled from B by a:

F—2>§ (IV-62)

Choose a > 0 large enough so that B is a subbody of

XeB = xcB, x¢08 (IV-63)

The scaling of uniform {x,n,8} of B to % retains
the same uniform triplet (F,n,8). It follows theorem 8
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uniform {x,n,B8)} of ¥ uniform {x,n,B} of f.

is GAMSFB is GAMSFB (IV-64)

Since B 4is a subbody of B the roles of B, B may
be replaced by f, B respectively in Eq. (IV-61):

unifora {X,n,8} of B uniform {x,n,8} of B
is GAMSFB is GAMSFB (IV-65)
It follows Eqs. (IV-61), (IV-64), (IV-65) that

uniform {x,n,B)} of B uniform {x,n,B8} of B
> <=

is GAMSFB is GAMSFB

uniform {x,n,B} of B

is GAMSFB

(IV-66)

The theorem (where B represents any body of equal constitution)
follows Eq. (IV-66) . Q.E.D.

Theorem 10

Let the triplet (F,n,B) correspond to a uniform
{x,n,8} of B . Then

(F,n,B8)eD «= uniform {x,n,8} of B

is GAMSFB (IV-67)
where B 1is any body.

Proof

Let {Xx,n,B8} of B be uniform. It follows theorem 9 that
the property GAMSFB is independent of the body. Choose B to
correspond to a spherical neighborhood of 0 in E3 (NR(O)).
It follows that Ineq. (IV-45) for any B is equivalent to the
following:
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e(F*(X),n*(X),B*(X) dM > M e(F,n,B) (1V-68)
Np(0)

(1) A*(X) dM = 0
Ng(0)

(i1) x*(X) = x(X) for XedN (0)

(1i1) {x*,n*,B*} ¥ {X,n,B}

It follows Eq. (IV-1) that the restriction of {x*,n*, g*}
. to a neighborhood of {x,n,8} is equivalent to x*(X)eN(x(X)),
3 F*(X)eN(F), n*(X)eN(n), B*(X)eN(B) on B . Since 6,t are
3 uniform, it follows Eq. (IV-15) that restriction (i) is
equivalent to f e(n*(X)-n) + tr TT(B*(X)-B) dM =0 .

Br(0)
Also since pp is uniform Ineq. (IV-67) has the following
equivalent representation:

taens e

f e(F*(X),n*(X),8*(X)) dV > V &(F,n,8) (IV-69)
“ Nz (0)
(1) 8 (N*(X)-n) + tr THB*X)-8) dV = 0
Ng(0)

(11) x*(X) = x(X) for Xe3Ng (0)

(111) either F*(X) # Forn*(X) #n or B*(X) ¢ 8
on NR(O)

and .
x*(X) eN(x(X))

F*(X) cN(F)
n*(X) eN(n)
B*(X)eN(B)

on NR(O)




—-———

In spite of notational differences for the neighborhoods, it
is clear that Ineq. (IV-69) is equivalent to Ineq. (III-16):

Ineq. (IV-68) <= Ineq. (III-16) (IV-70)

A uniform state is a state of mechanical equilibrium. It
follows the definition of GAMSFB that for a uniform state

Ineq (IV-69) > GAMSFB (IV-71)
for a uniform state

The theorem follows Eqs. (IV-70), (IV-71) -
Q.E.D.

Theorem 10 shows clearly an important property of an
equilibrium state. Only triplets (F,n,8) in D may correspond
to stable (i.e. GAMSFB) uniform global states.




V. CONCLUDING REMARKS

Obviously the postulated theory is based on classical

developments of continuum mechanics and thermal statics.

One of the most important properties assigned to an equilibrium

state is the stability property - Ineq. (III-16). It has been

shown in Section IV that the stability property is equivalent

to the static Global Adiabatic Mechanical Stability with Fixed
! Boundary. The equivalence is reassuring; this property of

static global stability is what was sought for the theory of

E equilibrium states.
(10)

=
.~

A previous attempt at the theory was made by this author.
The stability property assigned in that attempt, it is clear
only now, is necessary but not sufficient for Ineq. (III-16).
. It follows that more predictive capability can be expected of
g this theory than was possible with the previous version.

The development presented in this report falls far short
of that presented previously 10 in several respects. There
hasn't been time to modify all of the previous development
consistent with the theory reported here, but it appears that
most of that work will hold for the present theory.

There are additional developments which further characterize
the equilibrium region. Characteristic states (e.g. natural
states and ultrastable states) and state functions (e.g. natural
state internal energy density, isentropic recoverable internal
energy density, and isothermal recoverable internal energy
density) may be defined, which are useful in the further
analysis. There are also other kinds of global stability
which may be defined (global mechanical stability for fixed
tractions - adiabatic and isothermal), and associated subsets
. of equilibrium state-space may be found. For the description
r of processes some ideas are available. An equilibrium process

. may be defined jointly with an activation criterion. The

v remn a—cy o
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equilibrium process has similarity to the quasistatic process
for classical thermodynamics, and the activation criterion

has similarity to yield criterion and flow laws for the theory
of plasticity. The intent in this theory is to define the
activation criterion in terms of the properties of equilibrium
state-space. In other words, given a caloric equation of
state as a function of (F,n,B), everything about equilibrium
state~-space and equilibrium processes follows.
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